

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares

Conferencia: Complex Functions from Self-assembling Systems with Simple Precursors

Jonathan Nitschke

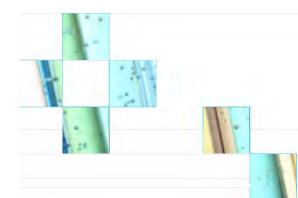
University of Cambridge

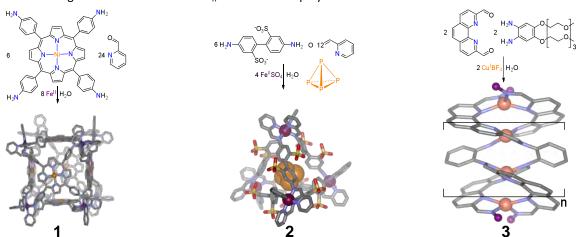
24/04/14

Aula de Seminarios do CIQUS

12:15 h

Más información: www.usc.es/ciqus



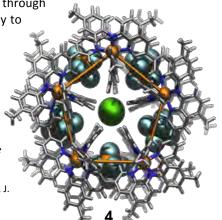


Complex Functions from Self-assembling Systems with Simple Precursors

Jonathan R. Nitschke

Department of Chemistry, University of Cambridge <u>irn34@cam.ac.uk</u> <u>http://www-jrn.ch.cam.ac.uk/</u>

The materials that we depend on rely upon ever-increasing structural complexity for their function. Designing complex materials for these devices through the art of chemical synthesis brings challenges and opportunities. The use of chemical self-assembly as a synthetic technique can simplify materials preparation by shifting intellectual effort away from designing molecules, and towards the design of *chemical systems* that are capable of self-assembling in such a way as to express the desired materials properties. This talk will focus upon the design of self-assembly processes that can bring together simple, organic molecules and first-row transition-metal ions into complex, functional structures. Below are shown the subcomponent precursors and crystal structures of three of these products: Fe^{II}₈ cubic cage 1, Fe^{II}₄ tetrahedral cage 2, and white-light electroluminescent Cu^{II}_n double-helical polymer 3.



Each of these products was prepared simply by mixing the precursors shown in water. Although the starting materials employed are simple, a complex understanding is required of the selectivities of the reversible bond-forming reactions and second-order interactions between subcomponents. Structural complexity may enable novel function; for example, cube $\bf 1$ will selectively bind to higher fullerenes, enabling their extraction from fullerene soot, are $\bf 2$ is capable of rendering air-stable white phosphorus ($\bf P_4$), which is ordinarily pyrophoric, and photoluminescent polymers that gel organic solvents as the temperature is raised have been prepared using the ideas that underpin $\bf 3$.

If the rules underlying a self-assembly process are well understood, these rules may allow the parallel preparation of multiple structures at once, or the transformation of structures in complex ways. ^[5] Our techniques thus allow entry into the emerging field of *systems chemistry*. ^[6] One recent example is a $M_{10}L_{15}$ pentagonal prism 4, shown at right, which forms part of a chemical network that behaves differently under the influences of different chemical signals. ^[7] This prism is formed through

the action of hexafluorophosphate template ions, and it binds tightly to chloride once formed.

- [1] W. Meng, B. Breiner, K. Rissanen, J. D. Thoburn, J. K. Clegg, J. R. Nitschke, *Angew. Chem. Int. Ed.* **2011**, *50*, 3479.
- [2] P. Mal, B. Breiner, K. Rissanen, J. R. Nitschke, *Science* **2009**, *324*, 1697.
- [3] X. de Hatten, D. Asil, R. H. Friend, J. R. Nitschke, J. Am. Chem. Soc. 2012, 134, 19170.
- [4] X. de Hatten, N. Bell, N. Yufa, G. Christmann, J. R. Nitschke, J. Am. Chem. Soc. 2011, 133, 3158.
- [5] V. E. Campbell, X. d. Hatten, N. Delsuc, B. Kauffmann, I. Huc, J. R. Nitschke, *Nature Chem.* 2010, 2, 684.
- [6] J. R. Nitschke, Nature 2009, 462, 736.
- [7] I. A. Riddell, M. M. J. Smulders, J. K. Clegg, Y. R. Hristova, B. Breiner, J. D. Thoburn, J. R. Nitschke, *Nature Chem.* 2012, 4, 751.

