

Laurent Gosse

Italian National Research Council

An overview of well-balanced numerical schemes for kinetic equations relying on "Caseology"

Kinetic equations in 1+1 dimensions, once discretized in the "discrete-ordinates" manner, may be viewed as a (semi-) linear 2N x 2N hyperbolic system. Such a simple approach is sufficient mostly in the special case N=1, i.e. the two-stream approximation (like for instance Goldstein-Taylor's model), to derive a very reliable WB discretization.

Yet, it doesn't allow to treat correctly models involving a continuous velocity variable, like e.g. radiative transfer, run-and-tumble models of chemotaxis or Fokker-Planck. It turns out that a spectral theory of stationary kinetic equations, sometimes called "Caseology", furnishes exactly what is needed in order to build WB numerical discretizations.

Fecha	Miércoles, 15 de noviembre de 2017
Lugar	Aula Magna - Facultad de Matemáticas
Hora	11:00
Idioma	Inglés

