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Aeroacoustics : sound propagation in flows

Context and motivation

Specific difficulty :  modelize the interaction 
between acoustic waves and walls

From E. J. Brambley (J. Sound Vibr. , 2009)

“ lining models (proposed in the litterature)
are shown to be ill posed ”

Objective : derive new lining models 
using rigorous asymptotic analysis
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Galbrun’s equations in a 2D thin duct

vε(x,±ε, t) = 0






(∂t + Mε∂x)2 uε − ∂x(∂xuε + ∂yvε) = 0

(∂t + Mε∂x)2 vε − ∂y(∂xuε + ∂yvε) = 0
(P)ε
~

The problem is well-posed  as soon as 

Mε ∈ W 1,∞(−1, 1)
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A dimensionless model

Passage to the limit

uε → u, vε → v

(P)

Formal limit model





(∂t + M∂x)2u − ∂xd = 0

∂xu + ∂yv = d(x, t)
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The quasi 1D model

• One advected 1D wave equation

When       is constant,       and      commute :M M E

• Decoupled 1D transport equations

(P) (∂t + M∂x)2 u− ∂2
x

[
E(u)

]
= 0

(∂t + M∂x)2 u = ∂2
x

[
E(u)

]

(∂t + M∂x)2
[
E(u)

]
− ∂2

x

[
E(u)

]
= 0
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Towards the well-posedness analysis

u(x, y, t) −→ u(k, y, t)
Fx

U(k,y,t) =
(

u(k,y,t),
[
(∂t + ikM)u

]
(k, y, t)

)t



where               is the operator in A(M) L2(−1, 1)2

First order evolution problem:

A(M) =




M I

E M

#



Towards the well-posedness analysis

U̇ + ikA(M)U = 0

u(x, y, t) −→ u(k, y, t)
Fx

U(k,y,t) =
(

u(k,y,t),
[
(∂t + ikM)u

]
(k, y, t)

)t
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Towards the well-posedness analysis

A(M)

Û(k, t) = e−ikA(M)t Û0(k)

As the operator is bounded, we can write

The problem is to get uniform bounds in k

As A(M) is non normal, general theorems from 
semi-group theory do not apply.

Intuitively,  one expects well-posedness if and only if 

σ
(
A(M)

)
⊂ C−

(
C− := {Im z ≤ 0}

)
.

.
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General properties of A(M)

S(u, v) = (v, u)Let ,   then one has 

A(M)∗ = S ◦ A(M) ◦ S

The spectrum of A(M) is symmetric w.r.t. the real axis.

A0(M) =




M I

0 M

#



is a compact perturbation of A(M)The operator



Re z

Im z

Structure of the spectrum of A(M)



M(y)

Re z

Im z

y

Structure of the spectrum of A(M)



Im z

Re z

Structure of the spectrum of A(M)

y



y

Im z

Re z

Structure of the spectrum of A(M)

M(y)



Eigenvalues of A(M)

With an explicit computation, one establishes that

(1)



Eigenvalues of A(M)

With an explicit computation, one establishes that

λ ∈ C \ Im MLemma :  A number                               is an eigenvalue 
                         
              of            if and only if:A(M)

(1)

( E ) FM (λ) = 2, where FM (λ) :=
∫ 1

−1

dy
(
λ−M(y)

)2



Eigenvalues of A(M)

With an explicit computation, one establishes that

λ ∈ C \ Im MLemma :  A number                               is an eigenvalue 
                         
              of            if and only if:A(M)

This eigenvalue is simple associated with

(uλ, u̇λ) =
( 1

(λ−M)2
,

1
(λ−M)

)

(1)

( E ) FM (λ) = 2, where FM (λ) :=
∫ 1

−1

dy
(
λ−M(y)

)2
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#
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A(M) U = λ U

{

v = E(u) / (λ−M)
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u =
E(u)
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


M I

E M

#



A(M) U = λ U

{

v = E(u) / (λ−M)
⇐⇒

=⇒ E(u)
[
E

( 1
(λ−M)2

)
− 1

]
= 0

= 0

u = v / (λ−M)

FM (λ) = 2⇐⇒



Eigenvalues of A(M) (2)

Lemma :  The operator A(M) has exactly two real 
eigenvalues outside the interval  [M−, M+]

λ− < M− < M+ < λ+

The study of real eigenvalues is easier because FM (λ)
is real-valued along the real axis
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λ−M(y)

)2

2

λ− λ+
M+M− λ



Im z

Re z

Back to the spectrum of A(M)



Im z

Re z

Back to the spectrum of A(M)

λ− λ+



Im z

Re z

Back to the spectrum of A(M)

λ− λ+



Definition of a stable profile

is unstable if  Definition : a Mach profile 

( E )  has non real solutions

and stable if not. 

M



Definition of a stable profile

is unstable if  Definition : a Mach profile 

( E )  has non real solutions

and stable if not. 

M

Theorem :  if M is unstable, is strongly ill-posed(P)



Definition of a stable profile

is unstable if  Definition : a Mach profile 

( E )  has non real solutions

and stable if not. 

M

Theorem :  if M is unstable, is strongly ill-posed(P)

Conjecture :  if M is stable, is well-posed(P)



Definition of a stable profile

is unstable if  Definition : a Mach profile 

( E )  has non real solutions

and stable if not. 

M

Theorem :  if M is unstable, is strongly ill-posed(P)

Conjecture :  if M is stable, is well-posed(P) (*)

(*)  has been proven in some cases (see later)
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ε

(P)ε

These are new results for hydrodynamic instabilities in 
compressible fluids, proven by perturbation theory

Theorem :  if M is unstable, is unstable, i. e.(P)





(∂t + M∂x)2uε − ∂x(∂xuε + ∂yvε) = 0

ε2 (∂t + M∂x)2vε − ∂y(∂xuε + ∂yvε) = 0

‖uε‖L2
x(L2

y) + ‖vε‖L2
x(L2

y) ≥ C(u0, u1) eα t
ε



A by-product : hydrodynamic instabilities

ε

(P)ε

Most known results concern the incompressible case: 
Rayleigh, Fjortoft, Drazin, Schmid-Henningson...

Theorem :  if M is unstable, is unstable, i. e.(P)





(∂t + M∂x)2uε − ∂x(∂xuε + ∂yvε) = 0

ε2 (∂t + M∂x)2vε − ∂y(∂xuε + ∂yvε) = 0

‖uε‖L2
x(L2

y) + ‖vε‖L2
x(L2

y) ≥ C(u0, u1) eα t
ε



A by-product : hydrodynamic instabilities

ε

(P)ε

Most known results concern the incompressible case: 
Rayleigh, Fjortoft, Drazin, Schmid-Henningson...

Theorem :  if M is unstable, is unstable, i. e.(P)





(∂t + M∂x)2uε − ∂x(∂xuε + ∂yvε) = 0

ε2 (∂t + M∂x)2vε − ∂y(∂xuε + ∂yvε) = 0

‖uε‖L2
x(L2

y) + ‖vε‖L2
x(L2

y) ≥ C(u0, u1) eα t
ε

This is a low freq. approach in opposition to the high freq. 
approach of O. Laffite & al for Rayleigh -Taylor instability 
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Stability results

They have been obtained with the following process

1.  The profile M is approximated by a piecewise linear  
continuous profile Mh such that 

2.  One analyzes the equation ( E ) for Mh

(  the  function FMh(λ) is a rational fraction )

3.  One concludes using perturbation theory for                 
     eigenvalue problems (Kato)

‖Mh −M‖L∞ → 0, h → 0



Stability results

Theorem : the profile M is stable in the following 3 cases 

1.  M is convex or concave in [-1,1]



Stability results

Theorem : the profile M is stable in the following 3 cases 

1.  M is convex or concave in [-1,1]



Stability results

Theorem : the profile M is stable in the following 3 cases 

1.  M is convex or concave in [-1,1]
2.            M is decreasing  and  convex - concave 



Stability results

Theorem : the profile M is stable in the following 3 cases 

1.  M is convex or concave in [-1,1]
2.            M is decreasing  and  convex - concave 

3.  M is  increasing  and  concave - convex 
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It is more difficult to establish general instability results

However, it is possible to obtain several results in the case
of odd profiles, increasing and convex - concave.

M(y)2 ≤M ′(0)2 y2
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Instability results (1)

Theorem :  Assume that M is odd,
M is unstable

of class C2

if and only if
,

∫ 1

−1

M ′(0)2 y2 −M(y)2

y2 M(y)2
dy < 1 + M ′(0)2

increasing and convex - concave
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Instability results (1)

Application : M(y) = a tanh(α y), a > 0, α > 0.

Let α∗ the unique solution of 

α tanhα = 1 (α∗ ! 1.1996)

The profile M is unstable if and only if 

α > α∗ =⇒ α tanhα < 1.(*)

(*)

a <
[
1− α tanhα

] 1
2α > α∗ and  



Computation of discrete spectra

A(M)
With finite dimensional approximation spaces one 

constructs discrete approximations Ah(M) of

One computes the spectrum of  Ah(M)
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Instability results (2)

M be continuous  and Let {yj} be a regular

mesh of [−1, 1] of stepsize h > 0.

MhLet be the piecewise constant profile given by 

Mh(y) =
1
h

∫ yj+1

yj

M(y) dy, y ∈ [yj , yj+1]

Then, for small enough, is unstable.Mhh

This points out how delicate is the numerical 
approximation of the problem 
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A well-posedness result

‖u(·, t)‖H1
x(L2

y) ≤ C(M) (1 + t3)
(
‖u0‖H4

x(L2
y) + ‖u1‖H3

x(L2
y)

)

Theorem : Under assumptions (A) and (B), (P) is 
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Proof of the theorem

Using the Fourier-Laplace transform in 

(∂t + M∂x)2 u = ∂2
x

[
E(u)

]
Since , it suffices to study

U(x, t) :=
[
E(u)

]
(x, t)

one obtains an expression of the form : 

where φ is known explicitly from (u0, u1)

U(x, t) −→ Û(k, ω), k ∈ R, ω ∈ C

Û(k,ω) =
φ(λ, k)

2− FM (λ)
, ω = λ k



Proof of the theorem

f0(y,λ) = i
M(y)

(
λ−M(y)

)2 − i
1

λ−M(y)

f1(y,λ) =
1

(
λ−M(y)

)2

is singular along [M−, M+]λ !→ φ(λ, k)

φ(λ, k) = E
(
f0(·, λ) û0(·, λ)

)
+ E

(
f1(·, λ) û1(·, λ)

)
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Proof of the theorem

This integral is studied using complex variable techniques.

We have to use the analyticity properties of FM (λ)

With inverse Laplace transform in time: 

with k λI > 0 .

Û(k, t) =
∫

Imλ=λI

φ(λ, k)
2− FM (λ)

e−ikλt dλ

.

is analytic outside  λ −→ φ(λ, k) [M−, M+]
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Inverting the Laplace transform in time

Branch cut of FM (λ)

Im λ

Re λ

Poles of 
(
FM (λ)− 2

)−1
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Inverting the Laplace transform in time

Im λ

Re λλ+ λ−

Residue Residue

A principal value integral

(
lim
δ→0

∫
g(λ± ıδ)
λ± ıδ

dλ = P.V.

∫
g±(λ)

λ
dλ∓ ıπg±(0)

)
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U(x, t) = Up(x, t) + U c(x, t)

Up is a solution of the generalized wave equation 

[
(∂t − λ+ ∂x)(∂t − λ− ∂x)

]
Up = 0



U(x, t) = Up(x, t) + U c(x, t)

Up is a solution of the generalized wave equation 

U c is a continuous superposition on λ of solutions
of squared transport equations

[
(∂t − λ+ ∂x)(∂t − λ− ∂x)

]
Up = 0

(∂t − λ ∂x)2 U c,λ = 0U c =
∫ M+

M−

U c,λ dλ
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of the solution which is complicated but can be
exploited for numerical computations 

M(y) = M0 y

We present a numerical result for a linear profile

M(ŷ)

M0

−M0



A numerical illustration 

We get a quasi-analytic (through mutiple integrals)
of the solution which is complicated but can be
exploited for numerical computations 

M(y) = M0 y

and for the following initial conditions 

We present a numerical result for a linear profile

where is a gaussian profile.g

u0(x, y) = g(x), u0(x, y) = 0.
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The function U(x, t), M(y) = M0 (1− y2)

The red arrows move at velocities λ+ and λ−



The function u(x, y, t), M(y) = M0 (1− y2)
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Effective boundary conditions (in progress)

(∂t + M∂x)2 u(ϕ)− ∂2
x

[
E

(
u(ϕ)

)]
= ϕ

u(ϕ) = ∂tu(ϕ) = 0 at t = 0.

TM : ϕ(x, t) −→
[
TMϕ(x, t)

]
:= E

[
u(ϕ)

]

vε − ∂2
x

[
TMvε

]
= ε

(
∂xuε + ∂yvε

)

The well-posedness of the initial boundary problem
in the half-space has been proven (Kreiss method)



Effective boundary conditions (in progress)

(∂t + M∂x)2 u(ϕ)− ∂2
x

[
E

(
u(ϕ)

)]
= ϕ

u(ϕ) = ∂tu(ϕ) = 0 at t = 0.

TM : ϕ(x, t) −→
[
TMϕ(x, t)

]
:= E

[
u(ϕ)

]

vε − ∂2
x

[
TMvε

]
= ε

(
∂xuε + ∂yvε

)

Describe the reflection of waves
Investigate the existence of surface waves 

Questions (1)



Effective boundary conditions (in progress)

(∂t + M∂x)2 u(ϕ)− ∂2
x

[
E

(
u(ϕ)

)]
= ϕ

u(ϕ) = ∂tu(ϕ) = 0 at t = 0.

TM : ϕ(x, t) −→
[
TMϕ(x, t)

]
:= E

[
u(ϕ)

]

vε − ∂2
x

[
TMvε

]
= ε

(
∂xuε + ∂yvε

)

Find an efficient numerical method 

Questions (2)


