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1 An overview on IsoGeometric analysis (IGA)
B-splines and NURBS
Geometry description
Discretization in IGA
Local refinement: T-splines

2 Approximation of vector fields and differential forms
Construction of the discrete spaces
The commuting De Rham diagram
Maxwell eigenproblem: B-splines discretization
Maxwell eigenproblem: NURBS discretization
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Part I

An overview on Isogeometric Analysis

R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, 2010 3 / 33



IsoGeometric Analysis (IGA): an overview

Geometry is defined by Computer Aided Design (CAD) software.
CAD is based on Non Uniform Rational B-Splines (NURBS).

CAD and FEM use different descriptions for the geometry.
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IsoGeometric Analysis (IGA): an overview

Geometry is defined by Computer Aided Design (CAD) software.
CAD is based on Non Uniform Rational B-Splines (NURBS).

CAD and FEM use different descriptions for the geometry.
I Iso-parametric description of the geometry.
I Updating the geometry requires interface with CAD and remeshing.
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IsoGeometric Analysis (IGA): an overview

Geometry is defined by Computer Aided Design (CAD) software.
CAD is based on Non Uniform Rational B-Splines (NURBS).

CAD and FEM use different descriptions for the geometry.

CAD and IGA use the same geometry description.
I Maintain the geometric description given by CAD (NURBS).
I Iso-parametric approach: PDEs are numerically solved with NURBS.

Hughes, Cottrell, Bazilevs, CMAME, 2005
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IsoGeometric Analysis: definition of B-splines

Let {ξ1, . . . , ξn+p+1} be a non-uniform knot vector in the interval [0,1].
B-spline basis functions are defined recursively as

Bi ,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise.

Bi ,p(x) =
x − ξi
ξi+p − ξi

Bi ,p−1(x) +
ξi+p+1 − x

ξi+p+1 − ξi+1
Bi+1,p−1(x).

B-spline curves in Rd

F(x) =
∑m

i=1 Bi ,p(x)Ci , Ci ∈ Rd are the control points .

Multivariate B-splines
The definition is generalized by tensor products:

Sp1,p2,p3
α1,α2,α3

:= Sp1
α1
⊗ Sp2

α2
⊗ Sp3

α3
, Bijk(x) := Bi ,p1(x)Bj ,p2(y)Bk,p3(z).

B-spline volumes in R3

F(x) =

m1,m2,m3∑
i ,j ,k=1

Bijk(x)Cijk , Cijk ∈ R3 are the control points .
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The main properties of B-splines basis functions are

Piecewise polynomials of degree p, and regularity at most p − 1.

The regularity can be controlled by changing the knots multiplicity.
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Piecewise polynomials of degree p, and regularity at most p − 1.

The regularity can be controlled by changing the knots multiplicity.

The function Bi ,p is supported in the interval [ξi , ξi+p+1].

They are non-negative and form a partition of unity.

Sp
α: space of B-splines of degree p and regularity α at the knots.

Their derivatives satisfy

{
d

dx
v : v ∈ Sp

α

}
≡ Sp−1

α−1.
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IsoGeometric Analysis: definition of NURBS

NURBS in Rd are conic projections of B-splines in Rd+1

Weights, control points and basis functions:

wi = (Cw
i )d+1, (Ci )j =

(Cw
i )j

wi
, Ri ,p =

Bi ,p(ξ)wi∑m
`=1 B`,p(ξ)w`

.

Represent exactly a wide class of curves as, e.g., conic sections.

They have most of the good properties of B-splines.

Np
α: space of NURBS of degree p and regularity α at the knots.
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IGA: geometry description and mesh refinement

Coarsest mesh: geometry description

“Patch”, Ω̂ = (0, 1)2 Physical domain Ω

F

{
Ri = wiBi

w

}
i=1,...,N0

{(
wiBi
w

)
◦ F−1

}
i=1,...,N0

The approximation space Vh on Ω is obtained by push-forward:
Vh = span{Ri ◦ F−1, i = 1, . . . ,N0}
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IGA: geometry description and mesh refinement

First refinement

“Patch”, Ω̂ = (0, 1)2 Physical domain Ω

F

{
Ri = wiBi

w

}
i=1,...,N1

{(
wiBi
w

)
◦ F−1

}
i=1,...,N1

The geometrical map F and the weight w are fixed at the coarsest level of
discretization!
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IGA: geometry description and mesh refinement

Second refinement... and so on

“Patch”, Ω̂ = (0, 1)2 Physical domain Ω

F

{
Ri = wiBi

w

}
i=1,...,N2

{(
wiBi
w

)
◦ F−1

}
i=1,...,N2

The main drawback is the tensor product structure.
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Remark on refinement

There are three possibilities for refinement:

h-refinement (by multiple knot insertion)

p-refinement (by degree elevation)

k-refinement (by degree and continuity elevation)
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Multipatch domains

CAD : Geometries are described by mappings of several patches.

0 1

1

Ω

Ω

Ω

1

2

3

F

F

F3

2

1

Patch interfaces are normally treated just imposing C 0 regularity
⇓

domain decomposition type structure
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Breaking the tensor product structure: T-splines
Sederberg et al. 2004-, Buffa, Cho, Sangalli et al. 2010

CAD community (2004-): Definition of T-splines.
Based on PB splines, are associated with a T-mesh.
They are not based on tensor product structure.
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Sederberg et al. 2004-, Buffa, Cho, Sangalli et al. 2010

CAD community (2004-): Definition of T-splines.
Based on PB splines, are associated with a T-mesh.
They are not based on tensor product structure.

T-spline Simplification and Local Refinement

Thomas W. Sederberg, David L. Cardon
G. Thomas Finnigan, Nicholas S. North

Brigham Young University

Jianmin Zheng
Nanyang Technological University

Tom Lyche
Oslo University

Abstract

A typical NURBS surface model has a large percentage of super-
fluous control points that significantly interfere with the design pro-
cess. This paper presents an algorithm for eliminating such su-
perfluous control points, producing a T-spline. The algorithm can
remove substantially more control points than competing methods
such as B-spline wavelet decomposition. The paper also presents
a new T-spline local refinement algorithm and answers two funda-
mental open questions on T-spline theory.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—curve, surface, solid and object rep-
resentations;

Keywords: NURBS surfaces, T-splines, subdivision surfaces, lo-
cal refinement, knot removal

1 Introduction

A serious weakness with NURBS models is that NURBS control
points must lie topologically in a rectangular grid. This means that
typically, a large number of NURBS control points serve no pur-
pose other than to satisfy topological constraints. They carry no
significant geometric information. In Figure 1.a, all the red NURBS
control points are, in this sense, superfluous.

Figure 1: Head modeled (a) as a NURBS with 4712 control points
and (b) as a T-spline with 1109 control points. The red NURBS
control points are superfluous.

T-splines [Sederberg et al. 2003] are a generalization of NURBS
surfaces that are capable of significantly reducing the number of
superfluous control points. Figure 1.b shows a T-spline control grid
which was obtained by eliminating the superfluous control points
from the NURBS model. The main difference between a T-mesh
(i.e., a T-spline control mesh) and a NURBS control mesh is that T-
splines allow a row of control points to terminate. The final control
point in a partial row is called a T-junction. The T-junctions are
shown in purple in Figure 1.b.

Figure 2: Car door modeled as a NURBS and as a T-spline.

Figure 2 shows another example in which the superfluous control
points in a NURBS are removed to create a T-spline. The T-spline
model is geometrically equivalent to the NURBS model, yet has
only 1/3 as many control points.

Figure 3: NURBS head model, converted to a T-spline.

Superfluous control points are a serious nuisance for designers,
not merely because they require the designer to deal with more data,
but also because they can introduce unwanted ripples in the surface
as can be seen by comparing the forehead in the NURBS model in
Figure 3.a with that of the T-spline model in Figure 3.b. Designers
can waste dozens of hours on models such as this in tweaking the
NURBS control points while attempting to remove unwanted rip-
ples. Figure 1.a shows a NURBS head model. Figure 1 shows the

Courtesy of Sederberg et al 2004
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Breaking the tensor product structure: T-splines
Sederberg et al. 2004-, Buffa, Cho, Sangalli et al. 2010

CAD community (2004-): Definition of T-splines.
Based on PB splines, are associated with a T-mesh.
They are not based on tensor product structure.

Refinement algorithm ensures Sh ⊆ S ref
h (Seberberg et al )

I Possible severe fill-in of the T-mesh
I Expensive (cycle on many elements) and not local
I There is no well defined de-refinement strategy!
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Breaking the tensor product structure: T-splines
Sederberg et al. 2004-, Buffa, Cho, Sangalli et al. 2010

CAD community (2004-): Definition of T-splines.
Based on PB splines, are associated with a T-mesh.
They are not based on tensor product structure.

Refinement algorithm ensures Sh ⊆ S ref
h (Seberberg et al )

I Possible severe fill-in of the T-mesh
I Expensive (cycle on many elements) and not local
I There is no well defined de-refinement strategy!

Our contributions:
I Locality analysis: C 2 versus C 1 cubic splines
I Linear independence for fairly general meshes
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Severe fill-in: the worst case scenario

Want to refine the gray quads by split them in 4
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Severe fill-in: the worst case scenario

Want to refine the gray quads C 2 basis functions allover
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Severe fill-in can be avoided

Want to refine the gray quads C 1 basis functions allover
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Severe fill-in: second refinement step

Want to refine the gray quads C 2 basis functions allover
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Severe fill-in: second refinement step

Want to refine the gray quads C 1 basis functions allover
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Continuity in the use of T-splines
Buffa, Kumar, Sangalli. In preparation

The same behavior is observed in numerical simulations.

C 2 continuity causes a
fill-in of the mesh.

The refinement with
C 1 continuity is local.
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Linearly Independent T-splines
Buffa, Cho, Sangalli, 2010

There are examples of linearly dependent T-splines.

In cases of interest, we have a result. Indeed, linear independence is
guaranteed for all refinements obtained by the local refinement
algorithm and that can be decomposed on successive insertion of new
lines.

E.g.,
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Open issues

Local or quasi local refinement algorithm, allowing for regular
functions.
The definition of “aligned” T-splines may help.
Hughes, Scott et al. In preparation.

Linear independence on general T-meshes.
Control on support intersection.
Local approximation properties.
Suitable derefinement strategy.

Some of these problems may be solved with LR-splines (locally refined).
Dokken, Lyche et al. In preparation
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Open issues

Local or quasi local refinement algorithm, allowing for regular
functions.

Linear independence on general T-meshes.

Control on support intersection.

Local approximation properties.
Beirão da Veiga, Buffa, Cho, Sangalli. In preparation.

Suitable derefinement strategy.

Some of these problems may be solved with LR-splines (locally refined).
Dokken, Lyche et al. In preparation

R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, 2010 18 / 33



Open issues

Local or quasi local refinement algorithm, allowing for regular
functions.

Linear independence on general T-meshes.

Control on support intersection.

Local approximation properties.

Suitable derefinement strategy.

Some of these problems may be solved with LR-splines (locally refined).
Dokken, Lyche et al. In preparation

R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, 2010 18 / 33



Open issues

Local or quasi local refinement algorithm, allowing for regular
functions.

Linear independence on general T-meshes.

Control on support intersection.

Local approximation properties.

Suitable derefinement strategy.

Some of these problems may be solved with LR-splines (locally refined).
Dokken, Lyche et al. In preparation

R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, 2010 18 / 33


	An overview on Isogeometric Analysis
	An overview on IsoGeometric analysis (IGA)
	B-splines and NURBS
	Geometry description
	Discretization in IGA
	Local refinement: T-splines


	Approximation of vector fields and differential forms
	Approximation of vector fields and differential forms
	Construction of the discrete spaces
	The commuting De Rham diagram
	Maxwell eigenproblem: B-splines discretization
	Maxwell eigenproblem: NURBS discretization



