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1 Approximation of vector fields and differential forms
Construction of the discrete spaces
The commuting De Rham diagram
Maxwell eigenproblem: B-splines discretization
Maxwell eigenproblem: NURBS discretization
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Part I

Approximation of vector fields and differential forms
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Setting of the problem

Let Ω be a Lipschitz domain described by a NURBS mapping

F : Ω̂ −→ Ω, Ω̂ being the unit cube.

We define the functional spaces

H(d,Ω) = {u ∈ L2(Ω) : du ∈ L2(Ω)} , ‖u‖d,Ω = ‖u‖0 + ‖du‖0

H1(Ω)/R grad−−−−→ H(curl ,Ω)
curl−−−−→ H(div,Ω)

div−−−−→ L2(Ω).

For FEM, we have the following compatible discretization

Nodal FE
grad−−−−→ Edge FE

curl−−−−→ Face FE
div−−−−→ Disc. FE.

Approximation of vector fields: we seek for a NURBS or Splines
discretization compatible with this structure.

Applications: electromagnetic problems, Darcy’s flow, Stokes’ flow...
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Vector fields - approximation in Ω̂
Buffa, Sangalli, V., 2010

To recall some notation: univariate B-splines and NURBS

Sp
α/N

p
α : univariate Splines/NURBS of degree p and regularity α at knots.{

d

dx
v : v ∈ Sp

α

}
≡ Sp−1

α−1

To recall some notation: multivariate B-splines and NURBS

Sp1,p2,p3
α1,α2,α3

= Sp1
α1
⊗ Sp2

α2
⊗ Sp3

α3
, Np1,p2,p3

α1,α2,α3
= Np1

α1
⊗ Np2

α2
⊗ Np3

α3
.

Let us not keep track of the regularity α in what follows...

Differential operators: we look for discrete spaces in Ω̂ such that

R −−−−→ Ŝ0
ĝrad−−−−→ Ŝ1

dcurl−−−−→ Ŝ2
cdiv−−−−→ Ŝ3 −−−−→ 0
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Ŝ1 = Sp1−1,p2,p3 × Sp1,p2−1,p3 × Sp1,p2,p3−1
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Differential operators: we look for discrete spaces in Ω̂ such that
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ĝrad−−−−→ Ŝ1

dcurl−−−−→ Ŝ2
cdiv−−−−→ Ŝ3 −−−−→ 0

The sequence is exact.

Generalization of nodal, edge and face elements with higher regularity.

But what about NURBS?
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Vector fields - approximation in Ω̂
Buffa, Sangalli, V., 2010

To recall some notation: multivariate B-splines and NURBS

Sp1,p2,p3
α1,α2,α3

= Sp1
α1
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α2
⊗ Sp3

α3
, Np1,p2,p3

α1,α2,α3
= Np1

α1
⊗ Np2

α2
⊗ Np3

α3
.

Let us not keep track of the regularity α in what follows...

Differential operators: we look for discrete spaces in Ω̂ such that

N̂0
ĝrad−−−−→ N̂1

dcurl−−−−→ N̂2
cdiv−−−−→ N̂3

The derivative of a NURBS is not a NURBS.

The diagram for NURBS does not hold true.

D. Arnold (et al.) 06-10 teach us that N̂i are then not suitable for vector fields approximations
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Vector fields - SPLINES approximation in Ω

Spaces on Ω are defined just by push forward:

Si = ιi (Ŝi ), Ni = ιi (N̂i ).
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Vector fields - SPLINES approximation in Ω

Spaces on Ω are defined just by push forward:

Si = ιi (Ŝi ), Ni = ιi (N̂i ).

ι2(û) ◦ F = (detDF)−1DF û, Piola mapping

F
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Vector fields - SPLINES approximation in Ω

Spaces on Ω are defined just by push forward:

Si = ιi (Ŝi ), Ni = ιi (N̂i ).

ι3(φ) ◦ F = (detDF)−1φ̂, 3-forms mapping

F
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Vector fields - SPLINES approximation in Ω

Spaces on Ω are defined just by push forward:

Si = ιi (Ŝi ), Ni = ιi (N̂i ).

For splines, everything then works thanks to the geometric structure:

H1(Ω)/R grad−−−−→ H(curl ,Ω)
curl−−−−→ H(div,Ω)

div−−−−→ L2(Ω)

Π0?
y Π1?

y Π2?
y Π3?

y

S0/R
grad−−−−→ S1

curl−−−−→ S2
div−−−−→ S3

How can we define the commuting interpolants Πi?

Construct (commuting) one-dimensional projectors.

Construct the projectors in Ω̂ with tensor product structure.

Pull back from Ω to Ω̂.
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Construction of the interpolants for Spline spaces
Buffa, Rivas, Sangalli, V., 2010

Starting point: we know the local and stable projector Π̂p
S .

Π̂p
Ss = s, ∀s ∈ Sp

α,

|u|Hk (I ) ≤ C |u|
Hk (eI )

, ∀u ∈ Hk(0, 1), 0 ≤ k ≤ p + 1,

where I = (ξj , ξj+1), and Ĩ is a local extension.
L.L. Schumaker. Spline functions: basic theory, 2007.

Y. Bazilevs, L. Beirão da Veiga, J. Cottrell, T.J.R. Hughes, G. Sangalli, 2006.

Second idea: define Π̂p−1
A such that the 1D diagram commutes.
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Starting point: we know the local and stable projector Π̂p
S .

First idea: tensor products of Π̂p
S , choosing the right degree p.

The diagram is not commutative, because even the 1D diagram is not:

Π̂p−1
S

d

dx
u 6= d

dx
Π̂p

Su.

Second idea: define Π̂p−1
A such that the 1D diagram commutes.
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Construction of the interpolants for Spline spaces
Buffa, Rivas, Sangalli, V., 2010

Starting point: we know the local and stable projector Π̂p
S .

Second idea: define Π̂p−1
A such that the 1D diagram commutes.

Next step: in Ω̂, take tensor products of Π̂p
S and Π̂p−1

A .

For instance, for

Ŝ1 = Sp1−1,p2,p3 × Sp1,p2−1,p3 × Sp1,p2,p3−1

we define

Π̂1 := (Π̂p1−1
A ⊗ Π̂p2

S ⊗ Π̂p3

S )× (Π̂p1

S ⊗ Π̂p2−1
A ⊗ Π̂p3

S )× (Π̂p1

S ⊗ Π̂p2

S ⊗ Π̂p3−1
A ).
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Construction of the interpolants for Spline spaces
Buffa, Rivas, Sangalli, V., 2010

Starting point: we know the local and stable projector Π̂p
S .

Second idea: define Π̂p−1
A such that the 1D diagram commutes.

Next step: in Ω̂, take tensor products of Π̂p
S and Π̂p−1

A .

With this choice, the diagram in Ω̂ is commutative.

H1(Ω̂)/R ĝrad−−−−→ H(curl , Ω̂)
dcurl−−−−→ H(div, Ω̂)

cdiv−−−−→ L2(Ω̂)

bΠ0

y bΠ1

y bΠ2

y bΠ3

y
Ŝ0/R

ĝrad−−−−→ Ŝ1
dcurl−−−−→ Ŝ2

cdiv−−−−→ Ŝ3
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Construction of the interpolants for Spline spaces
Buffa, Rivas, Sangalli, V., 2010

Starting point: we know the local and stable projector Π̂p
S .

Second idea: define Π̂p−1
A such that the 1D diagram commutes.

Next step: in Ω̂, take tensor products of Π̂p
S and Π̂p−1

A .

Last step: define the interpolants in Ω by push forward techniques.

ιi (Πiφ) = Π̂i (ιi (φ)), ∀φ ∈ H(d,Ω), i = 0, . . . , 3
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div−−−−→ S3

The projectors Πi are local and L2(Ω)-stable.

The same idea can be used in spaces with boundary conditions.
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Approximation estimates
Buffa, Rivas, Sangalli, V., 2010.

Assume F : Ω̂→ Ω belongs to N0 and F−1 is piecewise regular.

Let K be an element of the mesh on the physical domain: 0 ≤ ` ≤ p

‖u − Πiu‖H(d i ,K) ≤ Ch`‖u‖
H`(d i ,eK)

, i = 0, . . . , 3,

As a consequence

‖u− Π1u‖H(curl ,Ω) ≤ Ch`‖u‖H`(curl ,Ω).

Reducing the continuity we can obtain estimates in terms of p.

If α = max{αi} ≤ p−1
2 then

‖u − Πiu‖H(d i ,K) ≤ C (h/p)`‖u‖
H`(d i ,eK)

, i = 0, . . . , 3.

Beirão da Veiga, Buffa, Rivas, Sangalli (2009).
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Maxwell eigenproblem: B-splines discretization

Maxwell eigenproblem

Find u ∈ H0(curl ,Ω), u 6= 0 and λ ∈ R, λ 6= 0 such that∫
Ω

curl u · curl v = λ

∫
Ω

u · v ∀v ∈ H0(curl ,Ω)

Theorem
If there is a commuting diagram with local and L2(Ω)-stable projectors,
the Galerkin approximation is spurious-free and optimal.

D. Arnold, R. Falk, R. Winther, Bulletin A.M.S. (2010)

The B-spline discretization fulfills the theorem: it is spectrally correct.

Exact CAD description of the geometry.

Higher regularity than standard edge elements.

Singular functions are approximated correctly.
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Maxwell eigenproblem in the patch Ω̂

We solve the eigenvalue problem: Find u 6= 0 and ω 6= 0 such that

curl curl u = ω2u in Ω̂,

u× n = 0 on ∂Ω̂.

We solve with a Galerkin projection on Ŝ1,0, and different degrees p.

In terms of d.o.f., we obtain better convergence rate than edge elements.
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Maxwell eigenproblem in the patch Ω̂

We solve the eigenvalue problem: Find u 6= 0 and ω 6= 0 such that

curl curl u = ω2u in Ω̂,

u× n = 0 on ∂Ω̂.

Fill-in of the matrix with respect to FEM. Sparsity pattern is similar.

0 200 400 600

0

100

200

300

400

500

600

700

nz = 33408
0 200 400 600

0

100

200

300

400

500

600

700

nz = 77856
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Maxwell eigenproblem in the patch Ω̂

We solve the eigenvalue problem: Find u 6= 0 and ω 6= 0 such that

curl curl u = ω2u in Ω̂,

u× n = 0 on ∂Ω̂.

We solve with continuous fields: the divergence is well defined.

It is an oscillating field, and converges to zero with order hp−1.
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Maxwell eigenproblem: Fichera’s corner

We solve the eigenvalue problem: Find u 6= 0 and ω 6= 0 such that

curl curl u = ω2u in Ω,
u× n = 0 on ∂Ω.

Interaction between edge and corner singularities.

We get a good approximation of the singular functions.

Eigenvalues computation

CODE by S. Zaglmayr M. Duruflé IGA, p = 3

d.o.f. 53982 177720 8421

Eig. 1. 3.2199939 3.2198740 3.2194306
Eig. 2. 5.8804425 5.88041891 5.8804604
Eig. 3. 5.8804553 5.88041891 5.8804604
Eig. 4. 10.6856632 10.6854921 10.6866214
Eig. 5. 10.6936955 10.6937829 10.6949643
Eig. 6. 10.6937289 10.6937829 10.6949643
Eig. 7. 12.3168796 12.3165205 12.3179492
Eig. 8. 12.3176901 12.3165205 12.3179492
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Maxwell source problem: non-convex domain

We solve the source problem, with mixed boundary conditions.

curl curl u + u = f.

The geometry is described exactly with only three elements.

Domain with a reentrant edge (as the L-shaped domain).

The solution is u = grad(r2/3 sin(2θ/3)), and u ∈ H2/3−ε(curl ,Ω).

The convergence rate in energy norm is h2/3, as expected.
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Maxwell eigenproblem: NURBS discretization

If we try to discretize the problem with NURBS, in the form:
Find uh ∈ N1, uh 6= 0 and λ ∈ R, λ 6= 0 such that∫

Ω
curl uh · curl vh = λ

∫
Ω

uh · vh ∀vh ∈ N1,

the diagram does not hold: spurious eigenvalues appear.
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If we try to discretize the problem with NURBS, in the form:
Find uh ∈ N1, uh 6= 0 and λ ∈ R, λ 6= 0 such that∫

Ω
curl uh · curl vh = λ

∫
Ω

uh · vh ∀vh ∈ N1,

the diagram does not hold: spurious eigenvalues appear.

In the continuous case, we have the equivalent mixed formulation:

Find (u, p) ∈ H0(curl ,Ω)× H1
0 (Ω), λ ∈ R such that∫

Ω
curl u · curl v +

∫
Ω
∇p · v = λ

∫
Ω

u · v ∀v ∈ H0(curl ,Ω),∫
Ω
∇q · u = 0 ∀q ∈ H1

0 (Ω).

The two discrete formulations are equivalent for B-splines.
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For a NURBS discretization, the two formulations are not equivalent.
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NURBS discretization: numerical results
Buffa, Sangalli, V. In preparation

The domain Ω is described with a NURBS mapping.

Solution of the mixed formulation with a NURBS discretization.
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The results are spurious-free, with optimal convergence rate.

Also the singular functions are approximated correctly.

The spectral correctness can also be proved for (mixed) NURBS.
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Conclusions

Isogeometric Analysis has been extended to the approximation of
vector fields.

I Generalization of edge and face elements
I Higher continuity than standard finite elements.
I Exact geometry description.

Complete theory for Maxwell, and promising numerical results.

Further comparisons with FEM will be done in the future.

COMING SOON
The GeoPDEs code: a research tool for Isogeometric Analysis of PDEs.

Open Octave (compatible with Matlab) implementation of the method.
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