

Journal of ALLOYS AND COMPOUNDS

Journal of Alloys and Compounds 225 (1995) 225-229

Crystal structure and magnetic properties of $CoR(BO_2)_5$ (R = Y, Gd) and NiR(BO₂)₅ (R = Nd, Gd)

J.A. Campá^a, C. Cascales^b, E. Gutiérrez Puebla^{b,c}, J. Mira^d, M.A. Monge^{b,c}, I. Rasines^{b,*}, J. Rivas^d, C. Ruíz Valero^{b,c}

Rasines , J. Rivas , C. Ruiz Valeto

* Facultad de Ciencias Geológicas, UCM, 28040 Madrid, Spain

^b Instituto de Ciencia de Materiales, CSIC, Serrano 113, 28006 Madrid, Spain

^c Laboratorio de Difracción de Rayos X y Cristalografía, Facultad de Ciencias Químicas, UCM, 28040 Madrid, Spain

^d Departamento de Física Aplicada, Facultad de Física, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain

Abstract

Single crystals of the title borates were grown from mixtures of R_2O_3 , NiO or Co_3O_4 and a large excess of B_2O_3 . Singlecrystal X-ray diffraction showed them to be monoclinic, centrosymmetric space group $P2_1/n$ (No. 14), Z=4, with cell parameters (in ångströms) a=8.494(2) and 8.560(4), b=7.574(2) and 7.578(2), c=9.364(6) and 9.370(2), and $\beta=94.03(3)^\circ$ and $93.35(3)^\circ$ for Co borates and R=Y and Gd respectively; the parameters were a=8.617(2) and 8.514(6), b=7.565(3) and 7.554(3), c=9.472(2) and 9.4329(6), and $\beta=93.46(1)^\circ$ and $93.81(2)^\circ$ for Ni borates and R=Nd and Gd respectively. The crystals studied by X-ray diffraction were analyzed using energy-dispersive X-ray spectroscopy. Magnetic measurements were taken from 300 to 4 K for the four borates.

Keywords: Rare-earth borates; Nickel borates; Cobalt borates; Crystal structure; Magnetic susceptibility

1. Introduction

First-row transition metals T can combine with rare earths R ($R \equiv Y$, La, Ce-Lu), forming T-R intermetallics, borides, carbides, silicides, nitrides, phosphides, oxides, chalcogenides. At present all these T-R compounds are being studied extensively because some of them show very interesting transport, magnetic and optical properties, which can be related with the 3d and 4f band structure and interactions. A good number of the T-R compounds find applications, for example, as superconducting materials or permanent magnets, and as devices for magneto-optical recording or miniature lasers. The authors, who are interested in studying structure-property relationships in novel compounds, have just described [1] the properties of the stoichiometric BaNi_{0.83}O_{2.5} oxide as a function its crystal structure, and have recently undertaken the task of reducing the lack of structural data established [2] on single crystals of T-R borates, with a view to studying their magneto-optical properties. Together with some structural data determined for polycrystalline samples, only the crystal structure of six T–R borates of composition $RCo(BO_2)_5$ ($R \equiv Y$, La, Nd, Sm, Ho, Yb) is well established by single-crystal X-ray diffraction [2]. In this paper we present two crystal-structure refinements and the results of magnetic measurements for the four title borates.

2. Experimental details

2.1. Crystal growth

Analytical grade R_2O_3 , NiO or CO_3O_4 and a large excess of B_2O_3 were melted in open platinum crucibles, maintained in air at 1000 °C during 3 h and cooled at 3 °C h⁻¹. After being washed with dilute nitric acid, dried and filtered, the grown crystals were separated mechanically from the non-crystalline remaining borate.

2.2. Data collection

The four crystals were mounted successively in a kappa Enraf-Nonius CAD4 diffractometer. The cell

^{*} Corresponding author.

Table 1						
Crystal and	refinement	data	for	$NiR(BO_2)_5$	$(R \equiv Nd,$	Gd)

······································		
Formula	$NiNd(BO_2)_5$	$NiGd(BO_2)_5$
Formula weight	416.99	429.99
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_1/n$
Cell dimensions		
a (Å)	8.617(4)	8.514(6)
b (Å)	7.565(3)	7.554(3)
<i>c</i> (Å)	9.472(1)	9.4429(6)
α (deg)	90	90
β (deg)	93.46(1)	93.81(2)
γ (deg)	90	90
Ζ	4	4
V (Å ³)	616.3(3)	605.3(5)
$\rho_{\rm calc} \ ({\rm g} \ {\rm cm}^{-3})$	4.5	4.7
F(000)	772	788
Temp. (°C)	295	295
Radiation	Graphite-monochromated Mo Ka	Graphite-monochromated Mo K α
λ (Å)	0.71069	0.71069
μ (Mo K α) (cm ⁻¹)	114.9	141.0
Crystal dimensions (mm)	$0.08 \times 0.1 \times 0.13$	$0.25 \times 0.1 \times 0.15$
2θ range (deg)	252	2-50
Scan technique	$\omega/2\theta$	$\omega/2\theta$
Data collected	(0,0,11) to (10,9,11)	(0,0,11) to (10,9,11)
Unique data	1206	1057
Observed reflections	1168	1030
$R_{\rm int}$ (%)	4.0	8.0
Standard reflections	2/20	2/16
$R = \Sigma \Delta^2 F / \Sigma F_{\rm o} $	3.4	4.6
$R_{\rm w} = (\Sigma w \Delta^2 F / \Sigma w F_{\rm o} ^2)^{1/2}$	3.7	5.8
Maximum shift/error	0.01	0.07
Absorption correction range	0.77–1.64	0.95-1.04

dimensions were refined by least-squares fitting the 2θ values of 25 reflections. The structure was refined for the Ni compounds. A summary of the fundamental data is given in Table 1. The intensities were corrected for Lorentz and polarization effects. Scattering factors for neutral atoms and anomalous dispersion corrections for Ni, Nd and Gd atoms were taken from Ref. [3].

2.3. Structure determination

In both structures the refinement was initiated with data from Ref. [4]. Empirical absorption corrections [5] were applied at the end of the isotropic refinements. Mixed full-matrix least-squares refinements minimizing $\Sigma w(|F_o| - |F_c|)^2$ with anisotropic temperature factors for all the atoms and weights [6] $w = 1/(a + b|F_o|)^2$ where a = 2.47, b = -0.03 if $|F_o| < 36$, and a = 0.69, b = 0.02 if $36 < |F_o| < 250$, for $R \equiv Nd$; a = 1.37, b = 0.02 if $0 < |F_o| < 300$ for $R \equiv Gd$. Most of the calculations were carried out with the X-RAY 80 system [7].

2.4. Magnetic measurements

SQUID (quantum design) and vibrating sample (DMS-1660) magnetometers, operating from 300 to 4

K under zero-field cooling conditions at various fields between 0 and 1000 Oe, were used for the magnetic measurements.

3. Results

Some crystals were up to 4 mm in size and all of them showed regular forms, more often prismatic. The Co compounds are purple ($R \equiv Y$) and garnet ($R \equiv Gd$); the Ni compounds are vermilion ($R \equiv Nd$) and transparent red ($R \equiv Gd$). Unit cell dimensions of all title compounds are given in Table 2. Atomic position coordinates and anisotropic thermal parameters as well as main interatomic distances and angles for both

Table 2				
Unit cell	dimensions	of	CoR(BO ₂) ₅	$(R \equiv 1)$

Unit cell dimensions of $CoR(BO_2)_5$ ($R \equiv Y$, Gd) and $NiR(BO_2)_5$ ($R \equiv Nd$, Gd), space group $P2_1/n$, $Z \approx 4$

3d	R	a (Å)	b (Å)	c (Å)	β (deg)
Co	Y	8.494(2)	7.574(2)	9.364(6)	94.03(3)
Co	Gd	8.560(4)	7.578(2)	9.370(3)	93.35(3)
Ni	Nd	8.617(2)	7.565(3)	9.472(2)	93.46(1)
Ni	Gd	8.514(6)	7.554(3)	9.4329(6)	93.81(2)

NiR(BO₂)₅, $R \equiv Nd$, Gd, are included in Tables 3–5. The basic structure is composed of $[B_5O_{10}]^{5-}$ anionic layers that crosslink the Co or Ni octahedra and the RO_{10} polyhedra. Infinite sheets of $[B_5O_{10}]^{5-}$ are composed of three sets of BO4 tetrahedra and two types of BO₃ planar triangles, joined by common corners. Although the triangles are not linked to one another, they play a bridging role for BO₄ tetrahedra. Fig. 1 shows the tetrahedra and triangular $[B_5O_{10}]^{5-}$ framework, and its mode of linkage. The R-O distances are markedly differentiated in value, typically between 2.3 and 2.9 Å. RO₁₀ distorted polyhedra are linked via common edges forming chains along the b-axis. The CoO₆ or NiO₆ octahedra are also largely deformed, the Co-O and Ni-O distances ranging from 2.0 to 2.4 Å. These octahedra are joined two by two sharing one common edge, giving rise to isolated $[Ni_2O_{10}]$ units, so

Table 3

Atomic coordinates and thermal parameters for NiNd(BO₂)₅, esds in parentheses, $U_{eq} = 1/3\Sigma_i\Sigma_j U_{ij}a^*_ia^*_ja_ia_j10^4$

Atom	x	у	z	$U_{\rm eq}$
Nd	0.18125(3)	0.18066(4)	0.23628(3)	40(1)
Ni	0.60261(9)	0.41130(9)	0.12737(8)	59(2)
01	0.0322(5)	0.7117(6)	0.2355(5)	85(12)
O2	0.8123(5)	0.5357(6)	0.1299(5)	66(11)
O3	0.9852(5)	0.4116(5)	0.3059(5)	72(11)
O4	0.8158(5)	0.6538(6)	0.3654(5)	70(11)
05	0.5847(5)	0.4722(6)	0.3515(4)	63(11)
O6	0.3267(5)	0.3916(5)	0.4180(4)	46(11)
07	0.5426(5)	0.2251(6)	0.5134(4)	55(11)
08	0.8162(5)	0.3749(6)	0.4908(4)	63(11)
09	0.4969(5)	0.6514(6)	0.0695(4)	60(11)
O10	0.2381(5)	0.4514(6)	0.1195(5)	75(11)
B1	0.9131(8)	0.5785(8)	0.2599(6)	43(16)
B2	0.4820(8)	0.3239(8)	0.3924(7)	60(17)
B3	0.7202(7)	0.5355(8)	0.4447(6)	26(15)
B4	0.8414(8)	0.5987(9)	-0.0007(7)	61(16)
B5	0.9312(8)	0.3126(8)	0.4130(7)	55(17)

Atom	U_{11}	U ₂₂	U_{33}	U ₁₂	U ₁₃	U ₂₃
— Nd	40(2)	41(2)	39(2)	3(1)	3(1)	9(1)
Ni	56(4)	55(4)	68(4)	3(3)	2(3)	-5(3)
01	93(21)	75(19)	85(20)	-9(17)	-5(16)	11(16)
O 2	48(19)	80(20)	71(20)	- 20(16)	-4(15)	16(16)
O3	87(19)	42(20)	90(20)	-4(16)	33(15)	8(15)
O4	81(20)	27(18)	103(20)	- 30(16)	3(16)	-13(15)
O5	63(19)	72(20)	53(19)	-21(16)	9(15)	32(15)
O6	49(18)	49(19)	40(18)	5(15)	8(14)	- 32(15)
07	48(18)	51(18)	71(19)	3(16)	31(14)	- 10(16)
08	49(18)	73(20)	68(19)	35(16)	18(15)	- 3(16)
O9	47(19)	61(19)	70(19)	0(16)	-21(15)	0(15)
O10	82(19)	49(19)	92(20)	- 20(16)	- 19(15)	- 15(16)
B1	63(27)	57(28)	7(26)	21(23)	- 16(21)	0(21)
B2	52(29)	44(29)	85(30)	-29(22)	19(23)	- 16(23)
B3	45(27)	25(27)	9(26)	8(23)	8(21)	12(22)
B4	49(28)	61(29)	77(29)	- 18(23)	32(22)	- 34(23)
B5	60(29)	52(30)	52(28)	-7(21)	-9(23)	- 4(21)

Table 4

Atomic coord	inates a	d thermal	parameters	for	NiGd(BO ₂) ₅ ,	esds
in parenthese	s, $U_{eq} = 1$	$/3\Sigma_i\Sigma_jU_{ij}a$	$*_{i}a*_{j}a_{i}a_{j}10^{4}$			

Atom	x		у	z		U _{eq}
Gd	0.1818	34(3)	0.17984(6)	0.2	3750(5)	106(2)
Ni	0.6004	(1)	0.4098(2)	0.1	282(1)	121(4)
01	0.0358	8(9)	0.7100(11)	0.2	320(9)	177(22)
O2	0.8112	2(9)	0.5358(9)	0.1	246(8)	147(20)
O3	0.9873	8(8)	0.4067(10)	0.3	004(8)	144(21)
O4	0.8175	5(9)	0.6529(10)	0.3	633(7)	118(20)
O5	0.5851	(8)	0.4713(9)	0.3	498(7)	122(19)
O6	0.3234	¥(8)	0.3903(9)	0.4	190(7)	131(20)
07	0.5446	5(8)	0.2264(10)	0.5	181(7)	100(19)
O 8	0.8190)(8)	0.3745(10)	0.4	896(7)	113(19)
09	0.4937	7(9)	0.6514(9)	0.0	715(8)	120(20)
O10	0.2427	7(8)	0.4443(10)	0.1	244(8)	151(20)
B 1	0.9157	7(13)	0.5730(15)	0.2	564(11)	114(29)
B2	0.482	7(14)	0.3231(14)) 0.3	945(13)	123(32)
B3	0.7214	4(13)	0.5348(15)) 0.4	438(13)	144(31)
B4	0.8373	3(13)	0.6017(16)) - 0.0	038(13)	146(32)
B5	0.932	5(15)	0.3114(15)) 0.4	118(14)	147(33)
Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Nd	106(4)	106(4)	107(4)	1(2)	10(2)	11(2)
Ni	120(7)	103(7)	140(7)	-2(4)	8(5)	-8(5)
01	136(38)	185(35)	216(39)	-20(30)	49(30)	-4(32)
O2	174(37)	88(33)	179(35)	24(26)	6(29)	- 17(28)
O3	114(33)	123(35)	205(38)	-21(27)	84(28)	32(28)
O4	146(35)	118(33)	96(33)	-27(28)	52(27)	3(27)
O5	161(35)	45(32)	152(33)	19(26)	-48(28)	34(26)
O6	126(35)	120(36)	145(35)	-17(27)	-1(27)	9(27)
07	106(32)	79(32)	122(33)	-24(26)	50(25)	5(28)
O 8	89(32)	156(35)	97(32)	-4(27)	36(25)	43(27)
O9	170(37)	53(30)	130(36)	-11(26)	-36(29)	21(26)
O10	113(35)	190(37)	144(34)	-12(27)	-35(27)	30(29)
B1	147(51)	151(50)	52(46)	86(43)	63(38)	-6(39)
B2	140(56)	127(58)	113(52)	- 33(39)	85(42)	- 26(40)
B3	98(50)	132(54)	196(54)	- 54(40)	- 35(43)	77(44)
B 4	85(50)	169(61)	193(55)	-28(42)	71(42)	-85(44)
B5	140(57)	120(58)	177(56)	-64(41)	-25(44)	-41(41)

Fig. 1. STRUPLO [8] perspective along the [101] direction of the borate framework in the $RNi(BO_2)_5$ structure, with BO_4 tetrahedra and BO_3 triangles.

Table 5 Main interatomic distances (ångströms) and angles (deg) in $NiR(BO_2)_5$

		$R \equiv 1$	Nd	R	≡Gd
R01 ¹		2.479) (4)	2.	413(8)
RO3 ²		2.544	4(4)	2.	482(7)
R051		2.864	4(4)	2.	842(7)
R06		2.612	2(4)	2.	577(7)
R06 ¹		2.629	9(4)	2.	638(7)
R07 ³		2.468	8(4)	2.	414(7)
R08 ³		2.695	5(4)	2.	714(7)
R091		2.476	5(4)	2.	426(7)
RO10		2.393	3(4)	2.	339(8)
R-0101		2.290	0(4)	2.	272(7)
Ni-O1 ¹		2.34	5(4)	2	358(8)
Ni-O2		2.03	5(4)	2.	034(7)
Ni-O4 ⁵		2.07	(4)	2.	063(8)
Ni-O5		2.18	7(4)	2.	154(7)
Ni09		2.090)(4)	2.	092(7)
Ni094		2.060)(4)	2.	051(7)
B1_016		1 460	5(8)	1	48(1)
B1_02		1.400)(7)	1.	51(1)
B1_03		1.500	2(8)	1.	$\frac{J1(1)}{44(1)}$
B1-05 B1-04		1.458	3(8)	1.	48(1)
		1.150	$\mathcal{O}(0)$	1.	47(1)
B2-01		1.470	S(8)	1.	47(1) 50(1)
B2-05 B2 06		1.49	D(0)	1.	30(1) 48(1)
B2-00 B2-07		1.40	/(0))(8)	1.	40(1)
D2-07		1.45:	(0)	1.	44(1)
B3-04		1.453	(8) (7)	1.	46(1)
B3-05		1.499	9(7) 2(7)	1.	49(1)
B3-06 ⁷		1.490	J(7)	1.	48(1)
B3-08		1.518	8(7)	1.	51(1)
B402		1.363	3(8)	1.	34(1)
B4O10 ⁴		1.33	7(8)	1.	33(1)
B407°		1.393	3(8)	1.	39(1)
B5O3		1.365	5(8)	1.	38(1)
B508		1.355	5(8)	1.	34(1)
B5O9 ⁵		1.373	3(7)	1.	37(1)
	R≡Nd	R≡Gd		R≡Nd	R≡Gd
O11-Ni-O22	139.4(2)	140.9(3)	O11-B2-O5	103.8(5)	103.9(9)
O1 ¹ -Ni-O4 ⁵	63.5(2)	63.5(5)	O11-B2-O6	107.8(8)	106.1(8)
O1 ¹ -Ni-O5	62.1(2)	62.1(3)	O1 ¹ -B2-O7	111.2(5)	112.0(8)
01 ¹ -Ni-09	118.8(2)	118.7(3)	O5-B2-O6	109.9(5)	110.1(8)
01 ¹ Ni09⁴	99.2(2)	101.1(3)	O5-B2-O7	113.8(5)	114.7(9)
02Ni04 ⁵	97.7(2)	98.3(3)	O6-B2-O7	109.9(5)	109.6(9)
02-Ni-05	90.3(2)	91.5(3)		~ /	()
02-Ni-09	88.5(2)	87.5(3)	O4B3O5	109.7(4)	109.2(8)
02-Ni-094	116.0(2)	112.4(3)	04-B3-067	114.5(4)	114.0(8)
04 ⁵ -Ni-05	102.1(2)	102.0(3)	04-B3-08	109 0(4)	108 7(8)
04 ⁵ -Ni-09	165.4(2)	166 2(3)	$05-B3-06^7$	112 9(4)	113 9(8)
04 ⁵ -Ni09 ⁴	86 3(2)	86 2(3)	05-B3-08	107 8(4)	107 6(8)
05_Ni_09	90.9(2)	90.4(3)	05-25-00	107.0(4)	107.0(0)
05 Ni 004	1513(2)	153 5(3)	00 -D300	102.5(4)	102.9(0)
$O_{2} = N_{1} = O_{2}$	70 1(2)	70 0(3)	O2 B4 O104	122 5(5)	125(1)
09-11-09	79.1(2)	79.9(3)	02-D4-010	110 4(5)	120(1)
016 81 02	112 3(5)	112 2/01	0105 PA 078	117.4(3)	120.2(9)
016 81 02	110.4(5)	112.2(0)	010- 4 4-0/°	117.1(3)	113(1)
	110.0(3)	111.0(0)		100 4/5	101 (/0)
O1-BI-O4	105.1(5)	104.3(8)	03-03-08	120.4(5)	121.6(9)
$O_2 = B_1 = O_3$	103.8(4)	100.8(8)	03-B3-09	113.9(5)	112(1)
02-BI-04	108.6(5)	108.0(8)	08-82-02	123.6(6)	120(1)
U3-B1-O4	112.6(5)	113.9(8)			

Symmetry code: (1) 1-x, $y-\frac{1}{2}$, $\frac{1}{2}-z$; (2) 1-x, y, z; (3) $x-\frac{1}{2}$, $\frac{1}{2}-y$, $z-\frac{1}{2}$, (4) 1-x, 1-y, -z; (5) $\frac{3}{2}-x$, $y-\frac{1}{2}$, $\frac{1}{2}-z$; (6) 1+x, y, z; (7) 1-x, 1-y, 1-z; (8) $\frac{1}{2}-x$, $\frac{1}{2}+y$, $\frac{1}{2}-z$.

Fig. 2. STRUPLO [8] view along the [101] direction of the structure $RNi(BO_2)_5$ showing the assembly of edge-sharing R-coordination polyhedra and Ni octahedra. The borate groups have been removed for clarity. The inset shows various isolated $[Ni_2O_{10}]$ units (left), and the RO_{10} chains (right).

Fig. 3. Reciprocal magnetic susceptibility χ^{-1} vs. temperature, at 1000 Oe, for NiNd(BO₂)₅.

that the NiO₆ octahedra chains along the *b* axis are, in fact, interrupted every two links (see the inset to Fig. 2). The Ni–Ni distances in the $[Ni_2O_{10}]$ units are 3.199(1) and 3.175(2) Å in the Nd and Gd compounds,

The d.c. magnetic susceptibilities of the four borates follow a Curie-Weiss law almost above 75 K, with Weiss constants $\theta = 7.5$ and 2.9 for the Co compounds with R = Y, Gd, respectively, and $\theta = -7.5$ and -2.2 K for the Ni compounds and R = Nd, Gd. The deviation from the linearity observed at low temperature in the inverse susceptibility vs. T plot (Fig. 3) for $NiNd(BO_2)_5$ could be due to a magnetic coupling between Ni and Nd moments, although more frequently it is attributed [9] to the splitting of the free-ion ground state under the influence of the crystal field. The Weiss constant could then be entirely due to the crystal field. For the remaining compounds, magnetic measurements in the same temperature range show no appreciable deviations from paramagnetic behavior: the crystal field appears not to have an important influence on the ground states of the rare earths present in those borate compounds.

References

- J.A. Campá, E. Gutiérrez Puebla, M.A. Monge, I. Rasines and C. Ruíz Valero, J. Solid State Chem., 108 (1994) 230.
- [2] G. Heller, in F.L. Boschke (ed.), Topics in Current Chemistry, Vol. 131, Springer, Berlin, 1986, p. 39.
- [3] D.T. Cromer and J.T. Waber, in J.A. Ibers and W.C. Hamilton (eds.), *International Tables for X-Ray Crystallography*, Vol. IV, Kynoch Press, Birmingham, 1974, pp. 99, 149.
- [4] G.G. Dzhafarov, G.K. Abdullaev and Kh.S. Mamedov, Azerb. Khim. Zh., (1985) 110.
- [5] N. Walker and D. Stuart, Acta Crystallogr. A, 39 (1983) 158.
- [6] M. Martínez-Ripoll and F.H. Cano, *PESOS Program*, Instituto Rocasolano, CSIC, Madrid, 1975.
- [7] J.M. Stewart, F.A. Kundell and J.C. Baldwin, *The X-Ray 80 System*, Computer Science Center, University of Maryland, College Park, MD, 1980.
- [8] R.X. Fischer, J. Appl. Crystallogr., 18 (1985) 258.
- [9] E. Antic-Fidancev, J. Aride, J.P. Chaminade, M. Lemaitre-Blaise and P. Porcher, J. Solid State Chem., 97 (1992) 74.