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The influence of the first and second cubic anisotropy constants on the hysteresis loops of
noninteracting single-domain magnetic particles is studied by Monte Carlo simulation, which turns
out to be a very powerful method for studying simple magnetic models. Both signs in the anisotropy
constants are taken into account. Relevant properties such as coercivity and remanence are studied
as a function of temperature when the second anisotropy constant is negligible. The influence of the
second term of the anisotropy energy is studied in detaillfe0 K. It is concluded that this term

has a big influence on the static magnetic behavior when the first anisotropy constant is negative.
© 1999 American Institute of Physids50021-897@09)07004-9

I. INTRODUCTION large number of magnetic phenomena in noninteracting sys-
tems were explained successfully.
The study of fine magnetic particles is nowadays one of  The energy of one of these particles for a given orienta-
the most important challenges of modern technology becausgn of the uniaxial easy axis in the presence of an external
it provides new opportunities for a better understanding Ofmagnetic field consists of two terms,
magnetic phenomena at the nanoscale level. From a techno-
logical point of view, a wide range of applications is found, E=E,+Ea, @
for example, in magnetic recording, permanent magnets, fethe first one representing the interaction with the field,
rofluids, pigments, etc. Pioneering work in this field was

done by Stoner and Wohlfartthy Neel” and by Browr® An En=—u-H, v
updated review of the developments in the study of fine magang the second one the energy of anisotropy for the uniaxial
netic particles can be found in Ref. 4. case,

For a theoretical investigation of the magnetic behavior
of a fine ferromagnetic particle system, it is necessary to
make use of simple models. Perhaps the most successful
model was developed by Edmund Stoner and Erich Wohl- ) o ) )
farth (known as the SW modemore than 50 years addn Whe.re K is the uniaxial anisotropy constant aMdis the
their model it is assumed that the magnetization of a smalParticle volume. ,
particle is stable and parallel to the easy magnetic directions Fgr temperat.urejclqse to 0 K, the hysteresis loop of
when the applied magnetic field is zero. The easy direction he s!ngle-domaln unla_X|aI particle can be calcul_ated by_the
are separated by a single energy barrier equal to the produ llowing process. S_tartmg fr_om a state_ of very high applied
of the particle’s volume and anisotropy constant. The mag-'eld’ when the particle has its magnetization vector parallel

itude of th - . duri to the field, the position of the minimum of the energy is
nitude of the magnetizatiofu| remains constant during re- calculated. When the field is decreased the position of this

versible and irreversible changes forced by an external Magsinimum changes continuously and, accordingly, so does
netic field. The change in measured magnetization is due tg e measured magnetization. At some field value two minima
the change of the projection of the magnetization Vector,jnear instead of one, but only the one closest to the current
along the field direction. With these simple hypotheses &,qsition of the magnetization is considered, since the energy
barrier between the two minima prevents the transition. At a
dElectronic mail: farivas@usc.es negative field value this energy barrier disappears and a dis-

E,= —KV| —] , 3)
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continuity in the direction of the magnetization occurs. Thisll. THE MODEL
irreversible jump is the cause of the hysteresis. From this si . ) b h icl | q
point the energy function again presents only one minimum,  S\NC€ Interactions between the particles are neglected,

The magnetization curve is calculated from the cosine of théhs_ t(_)(;al (Ienergy _Of th? n|~||ode:_slystem |sh5|mplg t_he sum of th%
angle between the magnetization and field for every fieldndividual energies of all particies, each one being compose

value. By repeating the process for every orientation of th of two parts, the anisotropy energy and the interaction with

; . ; %he external field. For the case of materials with cubic sym-
easy axis all possible loops are calculated. Finally, the hys- : . .
. . 2 “metry, the magnetocrystalline anisotropy energy is expressed
teresis loop of a sample composed of a number of particles . . o
. : N .~ “phenomenologically as a power series of the direction co-
oriented along different directions can be calculated by inteZ. e .
rating these single loops with th ropriate probabilitys oS €8 7)=(Mx/M,M,/M,M,/M) of the magnetiza-
grating these singie 'oops € appropriate probablity,, i the orthogonal coordinate system formed by the lat-

density in the orientation angle. Stoner and Wohlfarth calcu;[ice axes. Due to the symmetry of the lattice only those

lated the hysteresis loop for an assembly of uniaxial pamdeﬁmctions which are even im, B, and y and symmetric
oriented at rand_om. They fourtd.=0.47¢H, for the coer- ,,qer nermutations of these variables have to be considered.
cive field andV,=0.5M for the remanence, wheMsisthe  rpe owest order term, which is of second order, gives no
saturation magnetization of the material add=2K/Msis i formation due to the relation®+ B2+ y?=1 between the
known as the anisotropy field, which is equal to the maxi-gjraction cosines. The next terms are fourth order terms, ei-
mum coercivity possibl€shown by the particles if they are ey proportional tax®+ B4+ v* or to a?B2+ a?y2+ B2,

oriented along the applied figldThe procedure is rigorously Bgth terms can be expressed by each other, since
valid only at T=0 K, since it considers the probability of

occupation of other possible states but the energy minimum (424 g2+ y?)2=1=(a*+ B*+ 9
to be zero.

In contrast to the case of uniaxial anisotropy, the case of +2(a?B2+ oy + B2y, 4
cubic magnetocrystalline anisotropy was not treated rigor- . ) ) )
ously until very recently, although materials which present itSC that it is enough to include only one of them in the series.
(such as iron or nicklare very important in experimental The next higher term that fulfills the symmetry conditions is

2022 ich i i i
magnetism. Starting from a very high field it was possible to® B%y", which is the only one of sixth order. It s customary

follow the first steps of the hysteresis loop, but after the fielo10 include terms up to this sixth order and to write the cubic

had reached the critical value, it was impossible to continueanISOtrOpy energy as

this process because of the existence of several local minima
to which the magnetization vector can jumpccording to a

i\(l)eel cglr(i:;rliggnﬁ,;r rsfﬂ(]j%rr'ﬁal fhaertlcliservgil\t/z C:fit;'lg agsot- whereK, andK, are the an_isotropy constants, whose vaIl_J_es
_py o , ¢ are taken from the experiments and usually are sensitive
=0.64 K /M, wherek, is the first anisotropy constant de- f,ncfions of temperature. Higher order terms have never

fined below. Although the value seems correct some queseen found necessary to describe experimental observations.
tions concerning its derlvgtlon remain to bg resol?/éd”.he_ ~ Depending on the sign and relative values of the anisot-
remanence is known, since it was possible to obtain itohy constants the energy topologies will be different. The
analytically” The theoretical values afd,=0.83Min the gifferent easy directions can be summarized as folltfn:
case ofk;>0 andM,=0.868M in the case oK;<0. K,>0 andK,>—9K; the easy directions are the crystallo-
The first rigorous calculation of the complete hysteresisgraphic axe$100]. If —4/9K,<K;<0 the easy axes are the
loop of a set of randomly aligned particles presenting cubig110]. For the rest of the cases the easy axes are the body
anisotropy was, to our knowledge, presented by Usov andiagonalg111].
Peschany? In their paper they gave the following upper and Let us consider a particle with cubic anisotropy oriented
lower bounds for the reduced coercivity=H:/H, for T in an arbitrary position and assume that a magnetic fieisl
=0K: 0.320<h.<0.335 when K;>0, and 0.18&ch.  applied along the axis. If two of the anisotropy axes follow
<0.200 wherK;<0. They essentially follow the method of the directions given by €;,¢,),(6,,¢,) (the third one is
Stoner and Wohlfarth; the problem of indetermination of thethen automatically determingdnd the magnetization vector
discontinuous jumps is solved by a dynamical model of evo{variable throughout the simulatipnis directed towards
lution, in which there are different probabilities to each ad-(#6,¢), the direction cosines will be
jacent energy minimum.

Ea=KyV(a?B2+ a?y?+ B2y%) + KoV B2, ®)

The purpose of this article is to investigate the hysteresis a=sin#; sind cog ¢;— ¢)+cosé, coss, (63
loops by the Monte Carlo simulation techniqeee, e.g.,
Ref. 11). Beside the possibility of verifying the results dis- B=sin 6, sind cog ¢,— ¢)+cosbh, cosh, (6b)
cussed above, this method enables us to obtain the complete
hysteresis loops, even for cases where the second term of the 2=1-a?— g2, (60)

anisotropy energy is relevant. It has, moreover, the advan-

tage that extensions to nonzero temperature are straightfor- Accordingly, in an applied field the energy of the par-
ward. In addition, the method can be used for any kind ofticle as a function of the orientation of the magnetization is
distribution of particle orientations and particle sizes. given by
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E(6,4) =K V(a?+ 2= a*~ B~ a?B?)
+K,V(a?B2(1— a®— %)) — M VH cosé.
(7
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ated. The attempted direction is chosen in a spherical seg-
ment around the present orientatigit”?, which is used as

azimuthal axis, with¢ €[0,27] and 36[0,56]. Then the
energy differencéle between the attempted and the present

Since we consider only monodispersed particles, and sinc@fientation is calculated. IAe<0, the magnetization is

we want to compare the results with the Stoner-Wohlfarthchanged tou) .

model, it is convenient to divide both sides bjK2|V and
use reduced variables f&, H, andM,

1
e(f,¢)= iz a?+ p2—at— pA—a?pB?

K
+ K—2a2,82(1—a2—,82) —hcosé, (8)
1

whereh=H/H, with H,=2|K,|/Mg, andm=M/Mg. The
plus sign corresponds to the case whénis positive, the
minus sign to the case whegy is negative.

Ill. SIMULATION TECHNIQUE

If Ae>0, the magnetization is changed
with probability exptAe/t) and remains unchanged with
probability 1—exp(—Ae/t) (Metropolis rates, the random
number generator used is the Kirkpatrick-Stoll RRS8ere,
t=KkgT/(2|K4|V) is the reduced temperature. In any case the
variable counting the elementary steps is increased and the
process is continued with the next elementary step. Since our
system consists of 250 particles, a complete Monte Carlo
step consists of 250 elementary steps, so that in every MC
step on average each particle is considered once. Varying the
aperture anglé#, i.e., the maximal jump angle, it is possible

to modify the range of acceptance to optimize the simulation.
Using this kind of local dynamic permits us to detect con-
finement in metastable states responsible for the hystéresis.

. . ) Choosing a nonlocal algorithm and drawing the attempted

~ We performed a Monte CarlMC) simulation to inves-  gjrection independently of the current one, the system would
tigate the hysteresis loops of particles presenting cubic ansyays be superparamagnetic, since it would be possible to
isotropy. The MC s_|mulat|on technique is a standard_methoqupk,re the whole phase space independently of the tempera-
to study systems with many degrees of freedom. During sucfe |n a compromise between simulations at low and high
a simulation, random numbers are used to simulate StatiStiC?émperatures we choost¥=0.075. The same value &g
fluctuations in order to generate the correct thermodynamicalnoy|d be used for simulations at different temperatures, oth-
probability distributions.” With such a “computer experi- enyise the direct comparison between obtained loops would
ment” one may obtain information about complex systemsyot pe possible. To perform the complete hysteresis loop a
which cannot be studied analytically. The purpose of the MGyery high field is applied initially at very high temperature.
simulation can be either to compare a specific model withrpen the system is carefully thermalized to the desired tem-
real experiments, or to compare its results with analyticalyeratyre, in which the total energy of the system is displayed
theories starting with the same model but using various ap order to follow the thermalization process and to ensure
proximations during analytical treatment. In addition, one iSynat the system is thermalized correctly. Since the thermali-
able to obtain microscopic information on the system, which, 4400 is done at very high reduced figde- 10, in the cor-
might not be accessible in a real experiment. responding equilibrium state almost all moments are aligned
. AMC simulation always consists of two parts: thermal- yith the field, and consequently the system reaches the equi-
ization and experiment. During the first part, the system igiprjum state very fast. Usually about 10000 MC steps are
led adiabatically to its thermodynamical equilibrium. This seq for thermalization, which is 12 orders of magnitude
first part is very important, since one starts normally with ajarger than the algorithm’s autocorrelation time at zero field.
nonequilibrium state. After the system is .correctly therma“'Once the desired temperature is reached, we start the loop by
zed, we can study its evolution and obtain the properties °§Iowly varying the reduced applied field in steps of 0.05
interest under the influence of external parameters. [0.02 if he (—0.5,0.5) for better accuragyn the following

The simulations were performed with a set of 250 ran-yay: After changing the field, 2000 MC steps are done, then
d_omly orientated _partlcles. Each particle is completely deyne magnetization is measured, the field is changed again,
fined by a set of six anglegi{, #1), (62, ¢2), and (6.4), @ and so on. The whole hysteresis loop is repeated for a large

described above. For each particle, the first easy 8xis  ,ymper of independent configurations to perform an en-
chosen from[0,7] with a sinoidal distribution andp; is  ggmple average.

generated from a homogeneous distributior @27). For

the second axis we take a perpendicular ofeHm/2,¢1)

and rotate it with a random angle out [@,27) in a plane V. THERMAL EVOLUTION OF THE HYSTERESIS
perpendicular to the first axis. These four angles defining th&OOPS WITH NEGLIGIBLE K

orientation of each particle are kept constant during the  First we consider the case where the higher order anisot-

simulation. The two remaining angles, ) per particle de-  ropy constanK, can be neglected. We obtained hysteresis

fining the direction of its magnetization will be variable |oops for an ensemble of randomly aligned particles with

throughout the MC simulation. Due to the thermalization,cubic anisotropy, both foK;>0 andK,;<0 [see Figs. &)

their initial values can be chosen arbitrary. and §d) for sketches of the energy topologihe results are
The MC simulation consists of many elementary stepsshown in Fig. 1. ForK,;>0, the reduced remanenas,

In every elementary step a parti¢les chosen at random and =M, /M obtained ism,= 0.831* 0.004. This value is in per-

an attempted orient(:ltioﬁgl't)t of the magnetization is gener- fect agreement with the theoretical vafli@he reduced co-
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FIG. 1. Reduced hysteresis loops of noninteracting single-domain particles.

The particles are randomly oriented in space. For the cubic anisotropy botRIG. 2. Temperature evolution of the reduced hysteresis loops of particles
signs of the anisotropy constant are considered. In addition the loop for thgresenting cubic anisotropy witk;>0. At high temperatures the loops
uniaxial caseStoner-Wohlfarth modegis plotted for comparison. The error  pecome superparamagnetic. The error bars are smaller than the size of the

bars are smaller than the size of the symbols. The solid lines are splinegymbols, and only a subset of points of the loops obtained is shown for
joining all points obtained, and only a subset of them is shown for clarity. clarity.

ercivity obtained in our simulation i$h.=0.316+0.002, This sets the blocking temperatuflg for the case when
which is very close to the lower bound given by Usov andK:1>0 aroundkgTg/(2K;V)=0.05 in reduced units. To
Peschany® For K,;<0 we obtainm,=0.865+0.004 anch,  avoid this dependence on the measuring time, a rescaling of
=0.183+0.002, the latter being within the bounds given by the temperature by dividing it by the blocking temperature
Usov and Pescharly.The error ofm, is given by the statis- €an be carried out. In any case, the functional dependence of
tical error of the point obtained #&=0. The reduced coer- the magnetic parameters will be the same, as will the shape
civity is obtained from a straight line joining the adjacent Of the loops.
points, and its error is obtained graphically by joining the It should also be kept in mind that the parameters which
same points, taking into account the upper and lower limit$nter into the definition of the reduced magnitudes, lkg
given by their error bars. and the anisotropy constants, depend strongly on tempera-
Next we consider the evolution of the hysteresis loops
with temperature. Typical results fd€,>0 are shown in
Fig. 2. For large temperature, the system approaches the su- - g
perparamagnetic regime, as can be easily seen in Fig. 2.
When performing the same calculations for negative anisot-
ropy constants, we obtain a faster decrease of the reduced
coercivity and remanence with temperature. This is easy to
understand since particles presenting cubic anisotropy with
K;>0 have their six easy directions along {H€80], [010],
and [001] axes with the minimum energy barrier between

o
=3

o
=)
T

reduced remanence my
=) =}
) ES
T

them given byK,V/4. In contrast, the anisotropy energy of 0.0}
particles withK;<0 shows eight minima along the body : : : : : :
diagonals, and the minimum energy barrier between them is 0.3
|K1|V/12. This increases the probability of a successful jump £ —o-Ki<0
over the barrier at a given temperature, and hence impliesa £
. 202

faster relaxation. The thermal dependence of the reduced co-  §
ercive force and remanence is plotted in Fig. 3. §

As in real experiments the time intervalbetween mea- g 01}
suring points plays an important role. A smaller frequency £
gives the system more time to adapt. At a given temperature 0.0 - o

7 is no longer long enough for the system to reach thermal . , ) ) .
equilibrium. This temperatur@vhich depends strongly or) 000 001 002 003 004 005
is called blocking temperaturg. All loops shown in the reduced temperature kgT /(2 1K, V)

pres_ent study were Obtaine_q by Ch_anging the reduced extefrg, 3. Temperature dependence of the reduced coercivity and remanence.
nal field by 0.02 in the sensitive region every 2000 MC stepsBoth signs of the first constant of cubic anisotropy are considered.
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FIG. 5. Influence of the second anisotropy constant on the reduced hyster-
esis loops of randomly aligned particles &t 0 K, whereK,;>0 andK,
>0. Rindicates the rati&, /K. The error bars are smaller than the size of

) ) ) the symbols, and a subset of some points of the loops obtained is shown for
FIG. 4. Influence of the relative values of the cubic anisotropy constants ORarity.

the anisotropy energy. In the unshaded region the easy axes ard Hifiig
in the region shaded lower left to upper right the easy axes are A}
and in the region shaded upper left to lower right the easy axes are along

[111]. Also shown are th'e.six diﬂereht regions where the main directionsof the cubic anisotropy energy is shown. There are six re-
show local maxima or minima changing the energy topoltage Table )L . . f .
gions, which are represented in Fig. 4 by roman numerals.
The different regions correspond to the relative values of the

ture. Hence, the remanence and coercivity may depend dinisotropy constants which change the directions of the local

ferently on temperature as the reduced remanence and co&pinima or maxima of the anisotropy energy function. A
civity shown in Fig. 3 do. summary of the different possibilities is given in Table I. The

different energy topologies are sketched in Fig. 8.
If both K; andK, are positive, the topology of the en-
V. INFLUENCE OF THE SECOND ANISOTROPY ergy is barely modified from the case of negligitdg. The
CONSTANT . .
hysteresis loop does not noticeably change, even for values
By using the same Monte Carlo approach it is possible taf K, much higher than the values reported in the literature;
investigate more complicated cases that are not accessibdxamples are presented in Fig. 5.K§{>0 andK,<0 the
analytically, such as the effect of the second anisotropy conenergy landscape is more sensitive to their r&jobut the
stantK,. In order to explain the experimental results for overall effect ofK, on the global hysteresis loop is still
bulk materials, it is often not necessary to include this secondmall. In Fig. 6 some loops are shown for different raffos
term, but it is known to be very important in other cases such
as in materials with reduced dimensionality. As happens with
K1, K, can also take positive or negative values and can
even change signs depending on temperature. We performed

simulations to study whether the sign and r&@e K, /K, of
the second and first anisotropy constants have a significant
influence on the reduced hysteresis loops.
The effect of the relative variation ¢f, with respect to
K is summarized in Fig. 4. The position of the easy axes as =
a function of both anisotropy constants, as discussed before,
are represented by the shaded areas. In addition, the topology
TABLE |. Local minima and maxima for cubic anisotropy energy.
Region [100] [110] [117]
| minimum maximum
Il maximum minimum maximum
1] maximum minimum minimum FIG. 6. Influence of the second anisotropy constant on the reduced hyster-
v maximum minimum esis loops of randomly aligned particles 0 K, whereK;>0 andK,
\Y, minimum maximum minimum <0. Rindicates the ratid&, /K. The error bars are smaller than the size of
\! minimum maximum maximum the symbols, and a subset of some points of the loops obtained is shown for
clarity.
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FIG. 7. Influence of the second anisotropy constant on the reduced hyster-
esis loops of randomly aligned particles &t 0 K, whereK;<0 andK,

can be positive or negativ® indicates the ratii, /K, . The error bars are
smaller than the size of the symbols, and only a subset of points of the loops
obtained is shown for clarity.

between the first and second anisotropy constants. The re- (e)
duced remanence changes R« —3 are due to the change
in topology. FIG. 8. Magnetocrystalline anisotropy energy for particles with cubic sym-

; ; ; ; ; metry. Cases wheré) K,;>0 andK,>—2K; (i.e., region I,R=K, /K
This picture Changes whelfy, IS. negatlve. In this case, =0 \yvas used for th%)plhlt(b) K1<02andK2>1£3K1 (i.ge., region IIZ,R:1
the energy surface is more sensitive to the valueKef 14 s ey (o) K,<0 and —2K,<K,<—3K, (ie., region Ill, R=
which is reflected by the fact that reduced remanence ands2 is useg, (d) K,<0 andK,< — 2K, (i.e., region IV,R=6 is used, (€
coercivity can suffer conspicuous changes. Several values fat; >0 andK,<—3K; (i.e., region V,R=—7 is used, and(f) K;>0 and
R are considered for the numerical simulation, although the 3K1<Kp<—2K, (i.e., region VI,R=—5/2 is useq
real values rarely exceed unity. FRre (—2,~) the reduced
remanence remains unchanged since the energy topology very diluted systems of single-domain particles. The in-
does not change significantly. With increasiRy the re-  fluence of dipolar interactions will be our next objective.
duced coercivity increases continuously. Witke (— 3,

—2) the topology changes, resulting in a discontinuity in theACKNOWLEDGMENTS
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