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Influence of the cubic anisotropy constants on the hysteresis loops
of single-domain particles: A Monte Carlo study
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The influence of the first and second cubic anisotropy constants on the hysteresis loops of
noninteracting single-domain magnetic particles is studied by Monte Carlo simulation, which turns
out to be a very powerful method for studying simple magnetic models. Both signs in the anisotropy
constants are taken into account. Relevant properties such as coercivity and remanence are studied
as a function of temperature when the second anisotropy constant is negligible. The influence of the
second term of the anisotropy energy is studied in detail forT50 K. It is concluded that this term
has a big influence on the static magnetic behavior when the first anisotropy constant is negative.
© 1999 American Institute of Physics.@S0021-8979~99!07004-8#
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I. INTRODUCTION

The study of fine magnetic particles is nowadays one
the most important challenges of modern technology beca
it provides new opportunities for a better understanding
magnetic phenomena at the nanoscale level. From a tec
logical point of view, a wide range of applications is foun
for example, in magnetic recording, permanent magnets,
rofluids, pigments, etc. Pioneering work in this field w
done by Stoner and Wohlfarth,1 by Néel2 and by Brown.3 An
updated review of the developments in the study of fine m
netic particles can be found in Ref. 4.

For a theoretical investigation of the magnetic behav
of a fine ferromagnetic particle system, it is necessary
make use of simple models. Perhaps the most succe
model was developed by Edmund Stoner and Erich Wo
farth ~known as the SW model! more than 50 years ago.1 In
their model it is assumed that the magnetization of a sm
particle is stable and parallel to the easy magnetic direct
when the applied magnetic field is zero. The easy directi
are separated by a single energy barrier equal to the pro
of the particle’s volume and anisotropy constant. The m

nitude of the magnetizationumW u remains constant during re
versible and irreversible changes forced by an external m
netic field. The change in measured magnetization is du
the change of the projection of the magnetization vec
along the field direction. With these simple hypothese

a!Electronic mail: farivas@usc.es
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large number of magnetic phenomena in noninteracting s
tems were explained successfully.

The energy of one of these particles for a given orien
tion of the uniaxial easy axisnW in the presence of an externa
magnetic fieldHW consists of two terms,

E5Eh1Ea , ~1!

the first one representing the interaction with the field,

Eh52mW •HW , ~2!

and the second one the energy of anisotropy for the unia
case,

Ea52KVS mW •nW

umW u
D 2

, ~3!

where K is the uniaxial anisotropy constant andV is the
particle volume.

For temperaturesT close to 0 K, the hysteresis loop o
one single-domain uniaxial particle can be calculated by
following process. Starting from a state of very high appli
field, when the particle has its magnetization vector para
to the field, the position of the minimum of the energy
calculated. When the field is decreased the position of
minimum changes continuously and, accordingly, so d
the measured magnetization. At some field value two mini
appear, instead of one, but only the one closest to the cur
position of the magnetization is considered, since the ene
barrier between the two minima prevents the transition. A
negative field value this energy barrier disappears and a
7 © 1999 American Institute of Physics
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continuity in the direction of the magnetization occurs. Th
irreversible jump is the cause of the hysteresis. From
point the energy function again presents only one minimu
The magnetization curve is calculated from the cosine of
angle between the magnetization and field for every fi
value. By repeating the process for every orientation of
easy axis all possible loops are calculated. Finally, the h
teresis loop of a sample composed of a number of parti
oriented along different directions can be calculated by in
grating these single loops with the appropriate probabi
density in the orientation angle. Stoner and Wohlfarth cal
lated the hysteresis loop for an assembly of uniaxial partic
oriented at random. They foundHc50.479Ha for the coer-
cive field andM r50.5M s for the remanence, whereM s is the
saturation magnetization of the material andHa52K/M s is
known as the anisotropy field, which is equal to the ma
mum coercivity possible~shown by the particles if they ar
oriented along the applied field!. The procedure is rigorously
valid only at T50 K, since it considers the probability o
occupation of other possible states but the energy minim
to be zero.

In contrast to the case of uniaxial anisotropy, the case
cubic magnetocrystalline anisotropy was not treated rig
ously until very recently, although materials which presen
~such as iron or nickel! are very important in experimenta
magnetism. Starting from a very high field it was possible
follow the first steps of the hysteresis loop, but after the fi
had reached the critical value, it was impossible to contin
this process because of the existence of several local min
to which the magnetization vector can jump.5 According to a
Néel calculation,6 for spherical particles with cubic aniso
ropy oriented at random, the coercive field isHc

50.64 K1 /M s, whereK1 is the first anisotropy constant de
fined below. Although the value seems correct some qu
tions concerning its derivation remain to be resolved.7,8 The
remanence is known, since it was possible to obtain
analytically.9 The theoretical values areM r50.831M s in the
case ofK1.0 andM r50.866M s in the case ofK1,0.

The first rigorous calculation of the complete hystere
loop of a set of randomly aligned particles presenting cu
anisotropy was, to our knowledge, presented by Usov
Peschany.10 In their paper they gave the following upper an
lower bounds for the reduced coercivityhc5Hc /Ha for T
50 K: 0.320,hc,0.335 when K1.0, and 0.180,hc

,0.200 whenK1,0. They essentially follow the method o
Stoner and Wohlfarth; the problem of indetermination of t
discontinuous jumps is solved by a dynamical model of e
lution, in which there are different probabilities to each a
jacent energy minimum.

The purpose of this article is to investigate the hystere
loops by the Monte Carlo simulation technique~see, e.g.,
Ref. 11!. Beside the possibility of verifying the results di
cussed above, this method enables us to obtain the com
hysteresis loops, even for cases where the second term o
anisotropy energy is relevant. It has, moreover, the adv
tage that extensions to nonzero temperature are straigh
ward. In addition, the method can be used for any kind
distribution of particle orientations and particle sizes.
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II. THE MODEL

Since interactions between the particles are neglec
the total energy of the model system is simply the sum of
individual energies of all particles, each one being compo
of two parts, the anisotropy energy and the interaction w
the external field. For the case of materials with cubic sy
metry, the magnetocrystalline anisotropy energy is expres
phenomenologically as a power series of the direction
sines (a,b,g)5(Mx /M ,M y /M ,Mz /M ) of the magnetiza-
tion in the orthogonal coordinate system formed by the
tice axes. Due to the symmetry of the lattice only tho
functions which are even ina, b, and g and symmetric
under permutations of these variables have to be conside
The lowest order term, which is of second order, gives
information due to the relationa21b21g251 between the
direction cosines. The next terms are fourth order terms,
ther proportional toa41b41g4 or to a2b21a2g21b2g2.
Both terms can be expressed by each other, since

~a21b21g2!2515~a41b41g4!

12~a2b21a2g21b2g2!, ~4!

so that it is enough to include only one of them in the seri
The next higher term that fulfills the symmetry conditions
a2b2g2, which is the only one of sixth order. It is customa
to include terms up to this sixth order and to write the cu
anisotropy energy as

Ea5K1V~a2b21a2g21b2g2!1K2Va2b2g2, ~5!

whereK1 andK2 are the anisotropy constants, whose valu
are taken from the experiments and usually are sens
functions of temperature. Higher order terms have ne
been found necessary to describe experimental observat

Depending on the sign and relative values of the anis
ropy constants the energy topologies will be different. T
different easy directions can be summarized as follows:12 If
K1.0 andK2.29K1 the easy directions are the crystall
graphic axes@100#. If 24/9K2,K1,0 the easy axes are th
@110#. For the rest of the cases the easy axes are the b
diagonals@111#.

Let us consider a particle with cubic anisotropy orient
in an arbitrary position and assume that a magnetic fieldH is
applied along thez axis. If two of the anisotropy axes follow
the directions given by (u1 ,f1),(u2 ,f2) ~the third one is
then automatically determined! and the magnetization vecto
~variable throughout the simulation! is directed towards
(u,f), the direction cosines will be

a5sinu1 sinu cos~f12f!1cosu1 cosu, ~6a!

b5sinu2 sinu cos~f22f!1cosu2 cosu, ~6b!

g2512a22b2. ~6c!

Accordingly, in an applied field the energy of the pa
ticle as a function of the orientation of the magnetization
given by
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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E~u,f!5K1V~a21b22a42b42a2b2!

1K2V~a2b2~12a22b2!!2M sVH cosu.

~7!

Since we consider only monodispersed particles, and s
we want to compare the results with the Stoner-Wohlfa
model, it is convenient to divide both sides by 2uK1uV and
use reduced variables forE, H, andM ,

e~u,f!56
1

2 S a21b22a42b42a2b2

1
K2

K1
a2b2~12a22b2! D2h cosu, ~8!

whereh5H/Ha with Ha52uK1u/M s, andm5M /M s. The
plus sign corresponds to the case whenK1 is positive, the
minus sign to the case whenK1 is negative.

III. SIMULATION TECHNIQUE

We performed a Monte Carlo~MC! simulation to inves-
tigate the hysteresis loops of particles presenting cubic
isotropy. The MC simulation technique is a standard meth
to study systems with many degrees of freedom. During s
a simulation, random numbers are used to simulate statis
fluctuations in order to generate the correct thermodynam
probability distributions.11 With such a ‘‘computer experi-
ment’’ one may obtain information about complex syste
which cannot be studied analytically. The purpose of the M
simulation can be either to compare a specific model w
real experiments, or to compare its results with analyti
theories starting with the same model but using various
proximations during analytical treatment. In addition, one
able to obtain microscopic information on the system, wh
might not be accessible in a real experiment.

A MC simulation always consists of two parts: therma
ization and experiment. During the first part, the system
led adiabatically to its thermodynamical equilibrium. Th
first part is very important, since one starts normally with
nonequilibrium state. After the system is correctly therma
zed, we can study its evolution and obtain the properties
interest under the influence of external parameters.

The simulations were performed with a set of 250 ra
domly orientated particles. Each particle is completely
fined by a set of six angles (u1 ,f1), (u2 ,f2), and (u,f), as
described above. For each particle, the first easy axisu1 is
chosen from@0,p# with a sinoidal distribution andf1 is
generated from a homogeneous distribution in@0,2p). For
the second axis we take a perpendicular one (u11p/2,f1)
and rotate it with a random angle out of@0,2p) in a plane
perpendicular to the first axis. These four angles defining
orientation of each particle are kept constant during
simulation. The two remaining angles (u,f) per particle de-
fining the direction of its magnetization will be variab
throughout the MC simulation. Due to the thermalizatio
their initial values can be chosen arbitrary.

The MC simulation consists of many elementary ste
In every elementary step a particlei is chosen at random an
an attempted orientationmW att

( i ) of the magnetization is gener
Downloaded 30 Oct 2001 to 193.144.85.76. Redistribution subject to A
ce
h

n-
d
h
al
al

s

h
l

p-
s
h

s

-
of

-
-

e
e

,

.

ated. The attempted direction is chosen in a spherical s
ment around the present orientationmW ( i ), which is used as
azimuthal axis, withf̄P@0,2p# and ūP@0,du#. Then the
energy differenceDe between the attempted and the pres
orientation is calculated. IfDe<0, the magnetization is
changed tomW att

( i ) . If De.0, the magnetization is change
with probability exp(2De/t) and remains unchanged wit
probability 12exp(2De/t) ~Metropolis rates, the random
number generator used is the Kirkpatrick-Stoll R250!. Here,
t5kBT/(2uK1uV) is the reduced temperature. In any case
variable counting the elementary steps is increased and
process is continued with the next elementary step. Since
system consists of 250 particles, a complete Monte Ca
step consists of 250 elementary steps, so that in every
step on average each particle is considered once. Varying
aperture angledu, i.e., the maximal jump angle, it is possib
to modify the range of acceptance to optimize the simulati
Using this kind of local dynamic permits us to detect co
finement in metastable states responsible for the hysteres13

Choosing a nonlocal algorithm and drawing the attemp
direction independently of the current one, the system wo
always be superparamagnetic, since it would be possibl
explore the whole phase space independently of the temp
ture. In a compromise between simulations at low and h
temperatures we choosedu50.075. The same value ofdu
should be used for simulations at different temperatures,
erwise the direct comparison between obtained loops wo
not be possible. To perform the complete hysteresis loo
very high field is applied initially at very high temperatur
Then the system is carefully thermalized to the desired te
perature, in which the total energy of the system is displa
in order to follow the thermalization process and to ens
that the system is thermalized correctly. Since the therm
zation is done at very high reduced fieldh510, in the cor-
responding equilibrium state almost all moments are alig
with the field, and consequently the system reaches the e
librium state very fast. Usually about 10000 MC steps a
used for thermalization, which is 1–2 orders of magnitu
larger than the algorithm’s autocorrelation time at zero fie
Once the desired temperature is reached, we start the loo
slowly varying the reduced applied field in steps of 0.
@0.02 if hP(20.5,0.5) for better accuracy# in the following
way: After changing the field, 2000 MC steps are done, th
the magnetization is measured, the field is changed ag
and so on. The whole hysteresis loop is repeated for a la
number of independent configurations to perform an
semble average.

IV. THERMAL EVOLUTION OF THE HYSTERESIS
LOOPS WITH NEGLIGIBLE K 2

First we consider the case where the higher order ani
ropy constantK2 can be neglected. We obtained hystere
loops for an ensemble of randomly aligned particles w
cubic anisotropy, both forK1.0 andK1,0 @see Figs. 8~a!
and 8~d! for sketches of the energy topology!. The results are
shown in Fig. 1. ForK1.0, the reduced remanencemr

5M r /M s obtained ismr50.83160.004. This value is in per-
fect agreement with the theoretical value.9 The reduced co-
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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ercivity obtained in our simulation ishc50.31660.002,
which is very close to the lower bound given by Usov a
Peschany.10 For K1,0 we obtainmr50.86560.004 andhc

50.18360.002, the latter being within the bounds given
Usov and Peschany.10 The error ofmr is given by the statis-
tical error of the point obtained ath50. The reduced coer
civity is obtained from a straight line joining the adjace
points, and its error is obtained graphically by joining t
same points, taking into account the upper and lower lim
given by their error bars.

Next we consider the evolution of the hysteresis loo
with temperature. Typical results forK1.0 are shown in
Fig. 2. For large temperature, the system approaches th
perparamagnetic regime, as can be easily seen in Fig
When performing the same calculations for negative ani
ropy constants, we obtain a faster decrease of the red
coercivity and remanence with temperature. This is eas
understand since particles presenting cubic anisotropy
K1.0 have their six easy directions along the@100#, @010#,
and @001# axes with the minimum energy barrier betwe
them given byK1V/4. In contrast, the anisotropy energy
particles withK1,0 shows eight minima along the bod
diagonals, and the minimum energy barrier between them
uK1uV/12. This increases the probability of a successful ju
over the barrier at a given temperature, and hence impli
faster relaxation. The thermal dependence of the reduced
ercive force and remanence is plotted in Fig. 3.

As in real experiments the time intervalt between mea-
suring points plays an important role. A smaller frequen
gives the system more time to adapt. At a given tempera
t is no longer long enough for the system to reach ther
equilibrium. This temperature~which depends strongly ont)
is called blocking temperatureTB . All loops shown in the
present study were obtained by changing the reduced e
nal field by 0.02 in the sensitive region every 2000 MC ste

FIG. 1. Reduced hysteresis loops of noninteracting single-domain parti
The particles are randomly oriented in space. For the cubic anisotropy
signs of the anisotropy constant are considered. In addition the loop fo
uniaxial case~Stoner-Wohlfarth model! is plotted for comparison. The erro
bars are smaller than the size of the symbols. The solid lines are sp
joining all points obtained, and only a subset of them is shown for clar
Downloaded 30 Oct 2001 to 193.144.85.76. Redistribution subject to A
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This sets the blocking temperatureTB for the case when
K1.0 around kBTB /(2K1V)50.05 in reduced units. To
avoid this dependence on the measuring time, a rescalin
the temperature by dividing it by the blocking temperatu
can be carried out. In any case, the functional dependenc
the magnetic parameters will be the same, as will the sh
of the loops.

It should also be kept in mind that the parameters wh
enter into the definition of the reduced magnitudes, likeM s

and the anisotropy constants, depend strongly on temp

s.
th

he

es
.

FIG. 2. Temperature evolution of the reduced hysteresis loops of part
presenting cubic anisotropy withK1.0. At high temperatures the loop
become superparamagnetic. The error bars are smaller than the size
symbols, and only a subset of points of the loops obtained is shown
clarity.

FIG. 3. Temperature dependence of the reduced coercivity and reman
Both signs of the first constant of cubic anisotropy are considered.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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ture. Hence, the remanence and coercivity may depend
ferently on temperature as the reduced remanence and
civity shown in Fig. 3 do.

V. INFLUENCE OF THE SECOND ANISOTROPY
CONSTANT

By using the same Monte Carlo approach it is possible
investigate more complicated cases that are not acces
analytically, such as the effect of the second anisotropy c
stant K2 . In order to explain the experimental results f
bulk materials, it is often not necessary to include this sec
term, but it is known to be very important in other cases su
as in materials with reduced dimensionality. As happens w
K1 , K2 can also take positive or negative values and
even change signs depending on temperature. We perfor
simulations to study whether the sign and ratioR[K2 /K1 of
the second and first anisotropy constants have a signifi
influence on the reduced hysteresis loops.

The effect of the relative variation ofK2 with respect to
K1 is summarized in Fig. 4. The position of the easy axes
a function of both anisotropy constants, as discussed be
are represented by the shaded areas. In addition, the topo

FIG. 4. Influence of the relative values of the cubic anisotropy constant
the anisotropy energy. In the unshaded region the easy axes are along@100#,
in the region shaded lower left to upper right the easy axes are along@110#,
and in the region shaded upper left to lower right the easy axes are a
@111#. Also shown are the six different regions where the main directi
show local maxima or minima changing the energy topology~see Table I!.

TABLE I. Local minima and maxima for cubic anisotropy energy.

Region @100# @110# @111#

I minimum maximum
II maximum minimum maximum
III maximum minimum minimum
IV maximum minimum
V minimum maximum minimum
VI minimum maximum maximum
Downloaded 30 Oct 2001 to 193.144.85.76. Redistribution subject to A
if-
er-

o
ble
n-

d
h
h
n
ed

nt

s
re,
gy

of the cubic anisotropy energy is shown. There are six
gions, which are represented in Fig. 4 by roman numer
The different regions correspond to the relative values of
anisotropy constants which change the directions of the lo
minima or maxima of the anisotropy energy function.
summary of the different possibilities is given in Table I. Th
different energy topologies are sketched in Fig. 8.

If both K1 andK2 are positive, the topology of the en
ergy is barely modified from the case of negligibleK2 . The
hysteresis loop does not noticeably change, even for va
of K2 much higher than the values reported in the literatu
examples are presented in Fig. 5. IfK1.0 andK2,0 the
energy landscape is more sensitive to their ratioR, but the
overall effect of K2 on the global hysteresis loop is sti
small. In Fig. 6 some loops are shown for different ratiosR

n

ng
s

FIG. 5. Influence of the second anisotropy constant on the reduced hy
esis loops of randomly aligned particles atT50 K, whereK1.0 andK2

.0. R indicates the ratioK2 /K1 . The error bars are smaller than the size
the symbols, and a subset of some points of the loops obtained is show
clarity.

FIG. 6. Influence of the second anisotropy constant on the reduced hy
esis loops of randomly aligned particles atT50 K, whereK1.0 andK2

,0. R indicates the ratioK2 /K1 . The error bars are smaller than the size
the symbols, and a subset of some points of the loops obtained is show
clarity.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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between the first and second anisotropy constants. The
duced remanence changes forR,23 are due to the chang
in topology.

This picture changes whenK1 is negative. In this case
the energy surface is more sensitive to the value ofK2 ,
which is reflected by the fact that reduced remanence
coercivity can suffer conspicuous changes. Several value
R are considered for the numerical simulation, although
real values rarely exceed unity. ForRP(22,̀ ) the reduced
remanence remains unchanged since the energy topo
does not change significantly. With increasingR, the re-
duced coercivity increases continuously. WithRP(23,
22) the topology changes, resulting in a discontinuity in t
reduced remanence and a reduced coercivity that incre
with the increasing absolute value of the ratio. In Fig. 7 so
of the loops are presented. As it can be seen for valuesR
about 0.5~which can be found in real materials! the loops
undergo an obvious change.

VI. CONCLUSIONS

We obtained the complete hysteresis loops for nonin
acting single-domain particles with cubic anisotropy for bo
signs of the first and second anisotropy constants. In the
K250, our numerical results agree well with the previo
published results for reduced remanence and complete l
obtained by Usov and Peschany. The second term of
cubic anisotropy energy expansion is of importance when
first anisotropy constant is negative. The local dynamic u
in our algorithms also allow us to study the influence
temperature on the hysteresis loops, hence it is possib
obtain the thermal dependence of important magnetic par
eters such us coercivity or remanence. Additionally, at h
temperature, superparamagnetic curves can be obtained

The simple model studied does not take into acco
interparticle interactions, but it may be of interest in the ca

FIG. 7. Influence of the second anisotropy constant on the reduced hy
esis loops of randomly aligned particles atT50 K, whereK1,0 andK2

can be positive or negative.R indicates the ratioK2 /K1 . The error bars are
smaller than the size of the symbols, and only a subset of points of the l
obtained is shown for clarity.
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of very diluted systems of single-domain particles. The
fluence of dipolar interactions will be our next objective.
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6L. Néel, C.R. Acad. Sci.~Paris! 224, 1488~1947!.
7C. E. Johnson and W. F. Brown, J. Appl. Phys.32, 2435~1961!.
8A. H. Morrish, The Physical Principles of Magnetism~Wiley, New York,
1965!, p. 351.

9R. Gans, Ann. Phys.~Leipzig! 15, 28 ~1932!.
10N. A. Usov and S. E. Peschany, J. Magn. Magn. Mater.174, 247 ~1997!.
11K. Binder and D. W. Heermann,Monte Carlo Simulations in Stastica

Physics, Springer Series in Solid State Science, Vol. 80, 2nd ed.~Springer,
Berlin, 1992!.

12R. M. Bozorth,Ferromagnetism~IEEE, New York, 1993!, Chap. 12.
13D. A. Dimitrov and G. M. Wysin, Phys. Rev. B54, 9237~1996!.

er-

ps

FIG. 8. Magnetocrystalline anisotropy energy for particles with cubic sy
metry. Cases where~a! K1.0 andK2.22K1 ~i.e., region I,R5K2 /K1

50 was used for the plot!, ~b! K1,0 andK2.23K1 ~i.e., region II,R5
210 is used!, ~c! K1,0 and 22K1,K2,23K1 ~i.e., region III, R5
25/2 is used!, ~d! K1,0 andK2,22K1 ~i.e., region IV,R56 is used!, ~e!
K1.0 andK2,23K1 ~i.e., region V,R527 is used!, and~f! K1.0 and
23K1,K2,22K1 ~i.e., region VI,R525/2 is used!.
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