

Physica B 284-288 (2000) 1418-1419

www.elsevier.com/locate/physb

Spin dynamics of Cr-doped La_{0.67}Ca_{0.33}MnO₃ in the paramagnetic regime

F. Rivadulla^{a,*}, M.T. Causa^b, L.E. Hueso^c, P. Sande^c, A. Fondado^c, J. Rivas^c, M.A. Lopez-Quintela^a

^aDepartamento Quimica-Fisica, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain ^bCentro Atomico de Bariloche, 8400-San Carlos de Bariloche, Argentina ^cDepartamento Elizado Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain

°Departamento Fisica Aplicada, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain

Abstract

We report DC magnetization and electron paramagnetic resonance (EPR) measurements in ceramic samples of $La_{0.67}Ca_{0.33}Mn_{1-y}Cr_yO_3$ ($0 \le y \le 0.1$). We have observed a decrease of T_c with doping, which reveals a continuous dilution of the ferromagnetic exchange interaction. On the other hand, although the EPR linewidth (ΔH_{pp}) depends on the doping level, its high-temperature limit value ($\Delta H_{pp}(\infty)$) remains constant around 0.25 T. This implies that dynamic double exchange (DE) interaction is too slow to contribute to the exchange narrowing process. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Colossal magnetoresistance; Double exchange interaction; La_{0.67}Ca_{0.33}MnO₃

Colossal magnetoresistance (CMR) in mixed valence manganites has attracted a large amount of interest in the last few years [1]. Substitution of Mn by Cr^{3+} could be of particular interest, as it is isoelectronic with Mn⁴⁺ and could be implicated in the DE interaction. Very recently, antiferromagnetic insulating-to-ferromagnetic metallic transition was induced in Sm_{0.5}Ca_{0.5}Mn_{1-v}Cr_vO₃, $0.05 \le y \le 0.09$ [2]. This has stimulated us to study the influence of Cr substitution in the CMR archetypal compound La_{0.67}Ca_{0.33}MnO₃. We have found that Cr doping reduces the ferromagnetic DE interaction of the pristine compound. This is manifested by a continuous decrease of both $T_{\rm C}$ and Curie–Weiss temperature $(\Theta_{\rm CW})$ with doping. We have also investigated the spin dynamics in the paramagnetic zone through the thermal evolution of the linewidth (ΔH_{pp}) for each level of doping.

La_{0.67}Ca_{0.33}Mn_{1-y}Cr_yO₃ (y = 0.0, 0.025, 0.05, 0.075, 0.10) were synthesized by conventional solid-state reaction. After several heating and grinding steps, pelletized

samples were annealed at 1573 K for 100 h. In order to accurately determine the value of $T_{\rm C}$, magnetization versus temperature was measured under an applied field of 10 Oe in field-cooled conditions using a VSM. For EPR measurements, a Bruker EMX spectrometer operating at 9.5 GHz (X-band) between 100 and 700 K was employed.

Replacement of 10% of Mn by Cr produces a decrease in $T_{\rm C}$ of nearly 60 K (Fig. 1). The same effect has been observed over $\Theta_{\rm CW}$ extracted from the high-temperature fit of the paramagnetic susceptibility to the Curie–Weiss law. Using the Weiss mean-field approximation and $\Theta_{\rm CW}$ we have derived the FM exchange constant J for doped samples [3]. We have observed a continuous reduction in the parameter $J/k_{\rm B}$ with doping (2.5% of Cr produces a reduction of nearly 20% in J). The observed dilution of J might be explained by a low degree of participation of Cr³⁺ in the DE interaction. The different effect of the crystal field on Mn⁴⁺ and Cr³⁺ probably causes energetic differences between $e_{\rm g}$ levels of Mn³⁺ and Cr³⁺ strong enough to make electronic exchange between them difficult.

 $\Delta H_{\rm pp}(T)$ was measured between $1.1 T_{\rm C} \leq T \leq 2.85 T_{\rm C}$ for all doping levels. Causa et al. [3] showed that $\Delta H_{\rm pp}(T)$ for A_{0.67}B_{0.33}MnO₃ (A=La, Pr: B=Ca, Sr,

^{*} Corresponding author. Fax: + 34-81-595012.

E-mail address: qffran@usc.es (F. Rivadulla)

Fig. 1. Doping dependence of the Curie temperature (\bullet) and of the high-temperature linewidth (\triangle).

Pb) in the paramagnetic regime is described by $\Delta H_{\rm pp}(\infty) C/T \chi_{\rm DC}(T)$, where $\chi_{\rm DC}$ is the magnetic susceptibility and $\Delta H_{\rm pp}(\infty)$ is the high-temperature limit linewidth. This limiting value is independent of temperature and is related to spin only interactions. We have fitted $\Delta H_{\rm pp}(T)$ with the experimental susceptibility and extracted $\Delta H_{\rm pp}(\infty)$ for each case. The results are plotted in Fig. 1. Although $\Delta H_{\rm pp}(T)$ is strongly influenced by doping this does not occur with $\Delta H_{\rm pp}(\infty)$, which remains nearly constant around 0.25 T. The temperature and doping dependence of $\Delta H_{\rm pp}$ are a direct consequence of the variations produced in the term $T \chi_{\rm DC}(T)$ by the reduction of the DE coupling when doping with Cr.

Within the exchange-narrowing theory, $\Delta H_{pp}(\infty)$ is given by the ratio ω_p^2/ω_{ex} between anisotropic (ω_p) and isotropic (ω_{ex}) spin interactions. As the effective FM coupling between Mn ions can be described, in the paramagnetic regime, by an isotropic Heisenberg Hamiltonian [3], DE should contribute to the exchange narrowing. However, $\Delta H_{pp}(\infty)$ is unaffected by the changes in the DE interaction. This can be explained considering the time scale associated to the exchange narrowing. Huber et al. [4] estimated a characteristic time of ~ 10^{-13} s for this process. If this time is considerably shorter than the characteristic time for electron transfer between Mn ions, $\Delta H_{\rm pp}(\infty)$ is not changed by dynamic DE, as happens in these manganites. From the DC electrical conductivity associated with incoherent small polaron hopping at $T > T_{\rm C}$, an estimation of the jump frequency (γ) between Mn³⁺-Mn⁴⁺ ions can be made [5]: $\sigma = x(1-x)N(e^2a^2\gamma/6kT)\exp(-W_{\rm H}/kT)$. Taking into account the relative concentration of Mn³⁺ and Mn⁴⁺ (x and (1-x), of total concentration N), a mean Mn-Mn hopping distance (a) of 4 Å, and the hopping activation energy of the polaron mobility $W_{\rm H}$, this jumping time gives a value of about ~ 10^{-11} s.

In summary, we have proved that the high-temperature limiting value of EPR linewidth is determined by the frequency of the spin-spin exchange interactions, and DE does not affect this relaxation because it occurs on a different time scale.

Acknowledgements

We thank financial support from M.E.C. of Spain (Project MAT98-0416).

References

- [1] A.P. Ramirez, J. Phys.: Condens. Matter 9 (1997) 8171, and references therein.
- [2] A. Barnabe et al., Appl. Phys. Lett. 71 (1997) 3907.
- [3] M.T. Causa et al., Phys. Rev. B 58 (1998) 3233.
- [4] D.L. Huber et al., Phys. Rev. B 60 (1999) 12155.
- [5] S. Elliot, The Physics and Chemistry of Solids, Wiley, UK, 1998 (Chapter VI).