

Journal of Magnetism and Magnetic Materials 226-230 (2001) 895-897

www.elsevier.com/locate/jmmm

Magnetic and electric properties of Sr₂FeMoO₆

R.D. Sánchez^{a,b,*}, D. Niebieskikwiat^a, A. Caneiro^a, L. Morales^{a,b}, M. Vásquez-Mansilla^a, F. Rivadulla^c, L.E. Hueso^c

^aComisión Nacional de Energía Atómica-Centro Atómico Bariloche and Instituto Balseiro, 8400 Bariloche, Argentina ^bCONICET, Argentina

^eDepartment of Physical Chemistry and Department of Applied Physics, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain

Abstract

We present electrical resistivity (ρ) and magnetic susceptibility (χ) data of the Sr₂FeMoO₆ double perovskite. We found that the as prepared sample shows semiconducting $\rho(T)$ in the whole temperature range and a magnetoresistance behavior typical of electron tunneling at the grain boundaries (gb). When the oxygen of the gb is removed ρ drops one order of magnitude. Below the magnetic ordering temperature $T_{\rm C} \approx 405$ K and above 590 K this sample is metallic ($d\rho/dT > 0$), while for $T_{\rm C} < T < 590$ K we observe a weak localization. The $\chi(T)$ data follow the Curie–Weiss law only in a short temperature range above $T_{\rm C}$. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Grain boundaries; Electrical resistivity; Magnetoresistance

Recently, polycrystalline samples of an ordered double perovskite Sr₂FeMoO₆ were reported as a promising material for practical devices due to the presence of magnetoresistance (MR) at room temperature (RT) [1]. Early magnetic [2], Mössbauer and neutron diffraction [3] experiments showed that Sr₂FeMoO₆ is ferrimagnetic with Fe³⁺ and Mo⁵⁺ electronic configuration. A band calculation [1] predicts half-metallic band structure, where the charge carriers are highly spin polarized even at RT ($T \leq T_c$). In this case the MR is related to electron tunneling [4] through the energy barrier generated by the grain boundaries.

We present magnetic and electric properties of Sr_2FeMoO_6 . A powdered sample was prepared by the solid state reaction route. The raw materials were mixed and heated at 950°C in a 10% H₂/Ar atmosphere. A final heat treatment at 1150°C under vacuum was done for 12 h.

X-ray diffraction data at RT were refined by the Rietveld method [5] assuming the I4/m space group. The obtained lattice parameters were a = b = 5.5770(2) Å and c = 7.9053(3) Å.

Electrical resistivity (ρ) was obtained by the standard four probe method. Magnetization (M) data were measured in a home-made Faraday balance with a magnetic field H = 5 kOe.

In Fig. 1a, we show the $\rho(T)$ curve of the as prepared sample. The insulating character of the electrical properties in the whole T range is obvious. At $T_C \approx 405$ K, no features are visible in ρ . The MR in the magnetic ordered phase (Fig. 1b) shows the typical behavior of electron tunneling through the barriers formed by the grain boundaries (gb) [4]. The half-metallic character of this compound [1] favors this transport mechanism. According to this picture, it is reasonable to think that the $\rho(T)$ curve of Fig. 1a is determined by the scattering at the gb [6].

Therefore, the bulk electrical resistivity (ρ_b) data were obtained after heating the sample up to 900 K under a vacuum of 10⁻⁶ Torr. During this process the oxygen at the gb is removed. The resulting $\rho_b(T)$ curve on cooling can be seen in Fig. 2a. It can be noted that at RT, ρ_b is

^{*}Corresponding author. Centro Atómico Bariloche, 8400 S.C. de Bariloche, Argentina. Tel.: + 54-2944-445274; fax: + 54-2944-445299.

E-mail address: rodo@cab.cnea.gov.ar (R.D. Sánchez).

Fig. 1. (a) $\rho(T)$ curve for the as prepared sample. (b) Magnetoresistance at several $T < T_{\rm C}$.

10 times lower than the ρ measured before the heat treatment (Fig. 1a). Below $T_{\rm C} \approx 405(10)$ K, $\rho_{\rm b}(T)$ presents a metallic behavior. Above this temperature can be seen a localization of the electrical carriers $(d\rho/dT < 0)$ up to $T \approx 590$ K, where the material becomes metallic again.

A proof of the influence of the oxygen content at the gb is the curve shown in the inset of Fig. 2a. There we show the time evolution of ρ at RT, having initially the sample under vacuum ($\rho \approx \rho_b$). When we broke the vacuum to atmospheric pressure, ρ began to increase notably with time. This behavior is due to the incorporation of oxygen at the gb, increasing the gb resistivity $\rho_{\rm gb}$ and affecting the total electrical resistivity $\rho = \rho_{\rm gb} + \rho_b$.

The *M* vs. *T* data were used to determine the Curie temperature as the inflection point in the M(T) curve. The obtained critical temperature was $T_C \approx 405(4)$ K. In Fig. 2b, we plot the inverse of the magnetic susceptibility $\chi^{-1} = H/M$ as a function of *T*, and it is observed that it does not follow a Curie–Weiss (C–W) law at all. The linear $\chi^{-1}(T)$ behavior only applies in a small temperature range, showing a deviation at higher *T*. This deviation probably indicates the coexistence of localized spins with itinerant electrons adding a constant value to χ . A band calculation [1] shows that the 4d electrons of the Mo⁵⁺ ions should be partially filling the conduction band. These observations could indicate that these electrons are itinerant.

The semiconducting region in Fig. 2a could be related to a weak Anderson localization [7,8] with an associated gap of $\sim 3 \text{ meV}$. This localization should be induced by some disorder in the Fe and Mo sites [9], or by the

Fig. 2. (a) Bulk resistivity vs. *T*, obtained under vacuum. Inset: Time evolution of ρ at RT when the vacuum is broken. (b) $\chi^{-1}(T)$ curve. The straight line represents a Curie–Weiss law.

presence of oxygen vacancies. At $T \approx 590$ K the Fermi level equals the energy of the mobility edge and the compound becomes metallic again. In a completely ordered perovskite without gb effect, it should be metallic in the whole T range.

According to this picture, the paramagnetic susceptibility should be $\chi = \chi_{loc} + \chi_{it}$, where the first term is the contribution of the localized moments (they should present a C-W dependence) and the second term is the metallic contribution, for which we expect a constant value. A more deep insight must be gained in order to understand this behavior at high *T*.

In summary, we have presented electrical resistivity and magnetic susceptibility data for the Sr₂FeMoO₆ double perovskite. We found that this compound is very sensitive to oxidation and ρ is strongly dominated by the carrier scattering at the gb. When the oxygen atoms placed at the gb are removed, we observe two metal-insulator transitions, being metallic below $T_{\rm C} \approx 405$ K and above 590 K. For intermediate T, the system presents a possible Anderson localization of the carriers with semiconducting behavior. Above $T_{\rm C}$, a deviation of $\chi(T)$ from the Curie–Weiss law could be showing the coexistence of localized and itinerant electrons.

References

 K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature (London) 395 (1998) 677.

- [2] T. Nakagawa, J. Phys. Soc. Japan 24 (1968) 806.
- [3] S. Nakayama, T. Nakagawa, S. Nomura, J. Phys. Soc. Japan 24 (1968) 219.
- [4] H.Y. Hwang, S.-W. Cheong, N.P. Ong, B. Batlogg, Phys. Rev. Lett. 77 (1996) 2041.
- [5] J. Rodriguez-Carvajal, Fullprof program, Laboratoire Léon Brillouin (CEA-CNRS), v/October 1998.
- [6] H.Q. Yin, J.-S. Zhou, J.-P. Zhou, R. Dass, J.T. McDevitt, J.B. Goodenough, Appl. Phys. Lett. 75 (1999) 2812.
- [7] N.F. Mott, Metal Insulator Transitions, Taylor & Francis, London, 1990.
- [8] R. Allub, B. Alascio, Phys. Rev. B 55 (1997) 14113.
- [9] A.S. Ogale, S.B. Ogale, R. Ramesh, T. Venkatesan, Appl. Phys. Lett. 75 (1999) 537.