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Starting from a simple definition of a stationary regime in first-order relaxation processes, we obtain that
experimental results are to be fitted to a power law when approaching the stationary limit. On the basis of this
result, we propose a graphical representation that allows the discrimination between power-law and stretched
exponential time decays. Examples of fittings of magnetic, dielectric, and simulated relaxation data support the
results.
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INTRODUCTION

The analysis of the long-term-decay behavior in real re-
laxation processes is a subject of interest beyond the aca-
demic domain.1 They are important in science, technology
and engineering. From a general point of view, the relaxation
phenomena observed in physics, biophysics, chemistry, ma-
terials science, polymer science, electronics, etc., present
many similar characteristics.2 Nevertheless, their analysis is
sometimes ambiguous due to the noise, the uncertainty in the
asymptotic limit and the relatively short interval of time dur-
ing which relaxation data are recorded. This, together with
the possibility of fitting the experimental results to different
models with equivalent precision3 makes difficult the identi-
fication of the processes involved,4,5 although alternatives are
sometimes proposed to solve these problems.6 Moreover, in
usual relaxation processes the coexistence of several diverse
mechanisms takes place,7 and their identification during the
fitting stage would be desirable, in order to separate them
from the others. Then, to avoid these problems, it would be
interesting to obtain models based on general considerations
that contained a reduced number of parameters to fit.

In this context, the magnetic properties of assemblies of
magnetic interacting particles have been studied by Monte
Carlo simulations,8 and recently Ulrich et al.9 have found
that the relaxation rate of the thermoremanent magnetic mo-
ment of such assemblies follows a universal power law. De-
pending on the value of the exponent, it is found stretched
exponential decay for diluted magnetic particles and alge-
braic decay for concentrated ones. These theoretical predic-
tions have been recently confirmed by measurements of re-
laxation in granular magnetic films.10,11

The evolution towards an equilibrium state in relaxation
phenomena is expected to approach a certain stationary re-
gime. Generally the word stationary indicates a process de-
scribed by time-independent parameters. Here we will use
such a basis to try to obtain the functional form of the time
decay of the relaxation process of a system when approach-
ing the stationary limit.

THE MODEL

Let a relaxing system be described by a field X. Its free
relaxation is of first-order when the time derivative of first

order of X is only a function of the non-time-dependence
of X,

�X −
�X

�t
= 0, �1�

where � is any spatial-like operator.
A reasonable assumption is that, at long times, the free

evolution of the system becomes independent of the initial
conditions, and tends to a stationary process. A simple anal-
ogy would be a finite relaxing RC network: it tends to a
regime where all the capacitors end by discharging with the
same time constant. Then, a scalar magnitude �, representing
any kind of average calculated over the state of the system,
can be used to describe it. Let us assume that � is monoto-
nously decreasing �positive� and that limt→���t�=0. In this
stationary limit, � describes the state of the system and there-
fore its evolution is described by ��t� and its time derivative,
���t�. We want to abstract this stationary concept, with no
reference to any particular process. Then, this first-order pro-
cess should be described by �i� adimensional magnitudes,
and �ii� � and its time derivative, without explicit presence of
time.

If we now consider two times, t1 and t2,

�1 = ��t1�, �2 = ��t2� ,

�1� = ���t1�, �2� = ���t2� ,

the magnitudes

�1

�2
,

�1�

�2�

fulfill the previous conditions. Any other adimensional mag-
nitude referring to t1 and t2 would be a function of them. We
exclude t1 / t2 because it refers explicitly to time and depends
on the time origin.

We arrive then at the fact that a first-order process ��t� is
stationary if there exists a function f fulfilling
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�1�

�2�
= f��1

�2
� . �2�

In order to solve Eq. �2�, let us consider two times t1�x� and
t2�x�, depending arbitrarily on a parameter x. Deriving with
respect to x,

d

dx

�1

�2
=

1

�2
2��2�1�

dt1

dx
− �1�2�

dt2

dx
� ,

d

dx

�1�

�2�
=

1

�2�
2��2��1�

dt1

dx
− �1��2�

dt2

dx
� . �3�

Obviously,

d

dx

�1

�2
= 0 ⇒

d

dx

�1�

�2�
= 0,

that is,

�2�1�
dt1

dx
= �1�2�

dt2

dx
⇒ �2��1�

dt1

dx
= �1��2�

dt2

dx
. �4�

If we choose functions t1�x� and t2�x� such that the first
equality of Eq. �4� is fulfilled, the second will also be ful-
filled. In that case, dividing both members of the equations

�1�1�

�1�
2 =

�2�2�

�2�
2 . �5�

We can also choose t1 and t2 independently, therefore each of
the members of Eq. �5� must be constant �,

���

��2 = � . �6�

In order to solve it, we rewrite it

±��

±��
= �

��

�
�7�

and integrating

ln���� = ln A + � ln��� �8�

with A a positive constant. Then

�� = ± A��. �9�

In a monotonous decreasing process we must use the nega-
tive sign, and this leads to the following solution:

� = �0e−At, � = 1, �10�

� = ��� − 1�A�t + t0��−1/��−1�, � � 1.

Introducing appropriate constants �0, �, and �, the second
solution can be written as

� = �0�1 +
t

��
�−�

�11�

with

� =
1

� − 1
, 0 	 � 	 � . �12�

Note that the Debye process ��=1� is the simplest case of
Eq. �2� ���1� /�2��= ��1 /�2�� and, for finite t, is the limit
�→� of Eq. �11�,

�D = �0e−t/�. �13�

Also, it is worth mentioning that, from Eq. �5�,

�1�

�2�
=

��1�

�2�
�2

�1

�2

. �14�

Given that the inverse of f exists �� and �� are strictly mo-
notonous decreasing�, the second member is a function of
�1� /�2�,

�1�

�2�
= g��1�

�2�
� , �15�

which can be extended by induction to higher-order deriva-
tives �i.e., the processes described by the derivatives are also
stationary�.

PROPOSAL OF GRAPHICAL REPRESENTATION

An interesting fact is that these considerations can be used
to obtain a useful representation of the relaxation process, in
which neither � nor t appear. Deriving Eq. �10� with respect
to ln t, and expressing the result as a function of �, we arrive
at

d�

d ln t
= − ���1 − � �

�0
�1/�	 . �16�

If d� /d ln t versus � is plotted �with ��0�=�0=1 and
limt→���t�=��=0�, the whole relaxation process can be
viewed in a finite window �Fig. 1�, as in the Cole-Cole rep-
resentation in the frequency domain,12–14 for example.

As a relevant case, it is worth mentioning that the
stretched exponential, frequently used in the analysis of re-
laxation phenomena

�K = �0e−�t/��

, �17�

appears as

d�K

d ln t
= 
� ln

�

�0
. �18�

In this proposed representation, processes � described by Eq.
�11� with �→� and �K with 
→1 reduce to the Debye
process. In cases different enough from this, useful informa-
tion can be read from the graphs �Fig. 1, with �0=1 and
��=0�.

�i� Near origin, power-law procesess have finite slope −�,
and stretched exponential ones have it infinite at origin.

�ii� Stretched exponential processes have a minimum at
1/e, whereas power-law processes have minima at points
��min that depend on �,
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��min = � �

1 + �
��

, �19�

with value

� d�

d ln t
�

min
= � �

1 + �
��+1

, �20�

giving therefore a criterion to identify, from experimental
data, stretched exponential, or power-law behaviors.

RESULTS AND DISCUSSION

With the aim of checking the validity of our model, we
have fitted three relaxation phenomena of a different nature:
�i� magnetic �which is one of the most studied scenarios4,7�,
taken from experiments with polycrystalline samples of mag-
netite �Fe3O4�, �ii� dielectric �widely studied by Jonscher15�,
with commercial samples of the polyacrylic acid Carbopol
907 �Ref. 16� of interest for pharmaceutical applications, and
�iii� simulated data.

All the examples are first-order processes: The magnetic
relaxation of Fe3O4 in the temperature window 250�T �K�
�350 is governed by the diffusion of vacancies18 that can be
described by Eq. �1� �which in fact is a diffusionlike equa-
tion�. Our dielectric relaxation is an RC discharge, typically
described by equations like Eq. �1�. Finally, the equations
that give rise to the simulated data fall also in the case of Eq.
�1�, as we will show later.

A. Magnetic relaxation

We measured the magnetic permeability, �r, of polycrys-
talline magnetite, Fe3O4, after a well-defined demagnetiza-
tion of the sample �magnetic disaccommodation
technique18�. Two processes are clearly distinguishable �Fig.
2, inset�. The first one can be attributed to irreversible move-
ments of the domain walls just after demagnetization pro-
cesses, with topological discontinuities. The second can be

attributed to reversible displacements after achieving the fi-
nal topology.17,19 Both are well fitted with Eq. �11�, with �
increasing with temperature in the range 0.2-1 and �
5,
respectively. Arrhenius fits of � �Fig. 2� give similar activa-
tion energies �0.9 and 1.0 eV, respectively� that suggest that
the damping of the movement of the walls in both processes
must be produced by the same mechanism.

B. Dielectric relaxation

The model was checked with real data taken from the
dielectric relaxation at 270 K of Carbopol 907, where � is
the potential difference between faces after application of an
electric current pulse. The sample was prepared from the raw
material, supplied as powder. It was compacted to obtain
disks with diameter 13 mm and thickness 1 mm. The faces
were polished and painted with a conductive coat of graph-
ite, in order to ensure for them constant potentials. In this
way, we avoid additional relaxation processes due to the
charge redistribution at the surfaces.

The final part of the curve �Fig. 3, inset� �stationary re-
gime� is well fitted with Eq. �26�. The best proof for the
idoneity of the power law in this case is that, upon variation
of the interval �t1 , t2�, the parameters of the fit remain rea-
sonably stable in a relatively significative time interval, with
��4.6, in contrast with the results from fits to a stretched
exponential �Fig. 3�.

C. Simulated data

We made simulations on simple models, in order to obtain
the stationary regime in a reasonable time. The model con-
sists of a lineal chain of N elements xi that relax through
nonlinear interaction with nearest neighbors. The elements x0
and xN−1 interact among them, therefore the system can be
interpreted as a periodic chain of period N or a ring. In each
iteration �time increase t�, there are xi increments in a given
quantity,

FIG. 1. �Color online� Proposal of graphical representation,
comparing power-law curves, with � between 0.1 and �, with
stretched exponential ones with 
=0.5 and 1. The case of 
=1 is
the same as for �→�.

FIG. 2. �Color online� Inset: Fit, at 305 K, of the magnetic
relaxation of Fe3O4 according to our graphical representation. Note
how it allows the identification of two relaxation processes. Main
frame: Arrhenius plot of the relaxation times of both processes vs
temperature.
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xi = t��xi+1 − xi��xi+1 − xi��−1 + �xi−1 − xi��xi−1 − xi��−1�,

� � 1 �21�

or

xi = t�xi−1 + xi+1 − 2xi��xi−1 + xi+1 − 2xi��−1, � � 1.

�22�

These equations are the unidimensional and discrete version
of the following diffusion like equations:

� · �� � x��−1 � x� −
�x

�t
= 0 �23�

and

��2x��−1�2x −
�x

�t
= 0 �24�

that fall within the cases described by Eq. �1�.
In order to obtain a reasonable variety of cases, the pro-

cess starts with random xi values with Gaussian distribution
�an example is shown in Fig. 4�. Besides this, we also proved
“ordered” initializations including periodic sequences of pe-
riods N /2 ,N /3,… . Before starting a new process, the total
average value is substracted to each element �so that �xi=0�,
in order to avoid premature rounding off effects in the pro-
cedure.

We choose as magnitude � the root-mean-square value of
the xi,

� =� 1

N
�
i=1

N

xi
2. �25�

Simulations were made for �=1.0, 1.2, 1.5, 1.8, 2.0, 2.5, 3.0,
and 5.0, varying t and N �typically t=0.05 and N=64�.
The higher �, the slower the process. With �=5, we had to
increase t during the process, keeping � /� in reasonable

values. Anyway, we checked that with smaller �, the result is
the same as when keeping constant t during the process.

In all cases, the final regime is of the type described by
Eq. �11�. We verified this checking that the parameters of the
fit to Eq. �26� do not change significantly upon changing the
point intervals used. Given the random initial conditions, the
amplitude �0 and the time � needed to achieve the stationary
regime are also random. Instead, � depends only on �, and is
coincident with the value given by Eq. �12� that corresponds
to a simple relaxor following Eq. �9�, with a deviation below
0.1% �with �=1 we obtain ��100�.

The case �=1 corresponds to a linear relaxation. For
��1 and long times xi→−2xi, and the process enters an
oscillatory regime that cannot be regarded as of first-order,
which led us to discard such cases.

� is invariant under a change of the time origin, and there-
fore it could be given a physical meaning. In the simulations,
�0=1/ ��−1�, corresponding to the stationary process, is
characteristic of local interactions. The other �pseudostation-
ary� processes, which depend on the time initialization, have
smaller �’s. This trend in � has been observed in all the
simulations, and it points to a link of � with the complexity
of the process �i.e., the smaller �, the more complex the
process�.

This interpretation is coherent with the results obtained in
Fe3O4, where the irreversible relaxation after demagnetiza-
tion is especially complicated, and involves slow diffusion
processes in each new domain configuration together with
magnetic interaction between domains. The velocity of the
slow processes increases with temperature, enabling their co-
ordination, and it leads to the increase of �, as expected.
When the domain walls arrive at the final topology, the co-
ordination is maximum, and the system goes to the stationary
regime with the highest �.

FIG. 3. �Color online� Inset: Representation of the dielectric
relaxation of polyacrylic acid according to our proposal. Note the
good fit of the left part of the graph �corresponding to the longer
times�. Main frame: �’s obtained after fittings to power-law and
stretched exponential equations upon variation of the fitted time
interval ��t1 , t2� ; t2=1 s�. In the case of power-law fits, the obtained
�’s show a more constant trend, suggesting their validity.

FIG. 4. �Color online� Main frame: Example of simulated relax-
ation �first model, with �=2, random initialization�. For the sake of
clarity, not all data points are shown. A case is selected from simu-
lations so that the �0 of the final lobe is high enough. Inset: Rep-
resentation of the process according to our proposal. It allows the
identification of four different processes. The parameters of the fits
are the following: A: �0=0.144, �=0.9998, �=6.45�103 , ��=0;
B: �0=0.161, �=0.55, �=15.2, ��=0.123; C: �0=0.434, �
=0.46, �=0.36, ��=0.163; D: �0=0.429, �=0.85, �=0.172, ��

=0.273. Note that for A �the stationary process�, ��1��
=1/ ��−1��.
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We conclude then, on the basis of quite general condi-
tions, that the relaxation process of first-order follows a
power-law time decay on approaching the stationary limit,
which is checked in real as well as in simulated data. We
propose also a graphical representation that allows the view
of the whole process in a finite window, independently of
time.

APPENDIX

Fits

The fit to Eq. �11� in the general case with unknown �0
and �� is done in two steps, first by calculating �0, �, and ��

by means of

d�

d ln t
= − ��� − ����1 − �� − ��

�0
�1/�	 , �A1�

and second by calculating � with the following fit:

��

�0
= −

1

�
�� − ��

�0
���+1�/�

�A2�

keeping �0, �, and �� constant.
Analogously, the fit to Eq. �17� is done calculating �0, 
,

and �� by means of

d�

d ln t
= 
�� − ���ln

�� − ���
�0

�A3�

and then calculating � with the usual fit, with fixed �0, 
, and
��.

Calculation of the derivatives

For the fit indicated by Eq. �A1�, two procedures were
followed.

�a� Least square fit: we took an interval of n data consecu-
tive in time t, and they were fitted to a polynomial of grade
K,

P�t� = �
k=1

K

ak�t − �t�k, �A4�

where �t is the mean value of t in such an interval. The fit is
weighed, using as the weight function � the square of Ham-
ming’s window. From the coefficients of the fit,

���t� = a0,

����t� = a1,

d�

d ln t
��t� = �ta1. �A5�

With simulated data, without noise, the best results are at-
tained with K�3, n�K+1. This procedure works well,
even with data unequally spaced in time, and it filters noise,
as the results are, in a certain sense, the average of the n
points.

�b� Convolution: The same data interval is convoluted
with a function �, in order to obtain �t and ��, and with
another �� to obtain ���. � and �� are obtained from � and
�� by an orthogonalization procedure with respect to the val-
ues of t in the points of the interval �that may not be uni-
formly spaced�. It could be said that the procedure is a dis-
cretization of the averages,

�� =
1

�
t1

t2

� dt

�
t1

t2

�� dt ,

��� =
1

�
t1

t2

� dt

�
t1

t2

��� dt =
1

�
t1

t2

� dt
�����t1

t2 − �
t1

t2

��� dt�
�A6�

with ��t1�=��t2�=0.
With exact data, the precision of this procedure was some-

what worse than the previous one, but its sensitivity to noise
is lower instead, which makes it useful for the processing of
experimental data.
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