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• We solve a mean field model that describes the fate of language competition.
• A set of three intuitive parameters determines the dynamics of the competing languages.
• The equilibrium points of the system are obtained and their stability is determined.
• A phase space is portrayed. For any two languages their evolution can be forecasted.
• Oscillating orbits are banned, this affects the way in which the languages evolve.
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a b s t r a c t

An in-depth analytic study of a model of language dynamics is presented: a model which tackles the
problem of the coexistence of two languages within a closed community of speakers taking into account
bilingualism and incorporating a parameter to measure the distance between languages. After previous
numerical simulations, themodel yielded that coexistencemight lead to survival of both languageswithin
monolingual speakers alongwith a bilingual community or to extinction of theweakest tongue depending
on different parameters. In this paper, such study is closed with thorough analytical calculations to settle
the results in a robust way and previous results are refined with some modifications. From the present
analysis it is possible to almost completely assay the number and nature of the equilibrium points of the
model, which depend on its parameters, as well as to build a phase space based on them. Also, we obtain
conclusions on the way the languages evolve with time. Our rigorous considerations also suggest ways
to further improve the model and facilitate the comparison of its consequences with those from other
approaches or with real data.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

At whatever scale that we look, languages reveal themselves
as very elaborated entities consisting of many coupled parts:
grammar, vocabulary, etc; each of them complex in its own nature
as well. They are, moreover, a main instrument of interaction in
an entangled web of social agents so that the state and evolution
of tongues cannot, ultimately, be considered as detached from
other social dynamics. We readily appreciate that we are in front
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of an utter challenge to the human intellect [1,2]. Small steps
are gradually taken towards a further understanding of the many
problems posed by languages. Leaving aside those contributions
from the more classic fields (e.g. philology), linguistic questions
were opened to very diverse branches of science during the
20th century by drawing inspiration from some pioneer multi-
disciplinary works [3]. Given the complexity outlined before, any
of these first transversal approaches are necessarily simplistic or
rely largely on computer simulations, and rigorous and definitive
mathematical proofs of the results are often missing.

The kind of questions that were exposed to a more varied
community of researchers regard the evolution of languages:
transformations in their syntaxes, grammars, or vocabularies;
aging, rise, and death; the dynamics of their number of speakers:
spreading of culture, competition or other kind of interaction
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with other tongues; etc. And the fields that take on these issues
are as diverse as sociology, biology, or physics. The science of
complex systems should be highlighted because of its very clever
usage of existing mathematical methods that stem mainly from
statistical mechanics [4]. While also appraising other important
contributions that widen our knowledge about the nature of
human languages [6,5,7–13], we shall focus on a seminal paper
by Abrams and Strogatz [14] that prominently triggered research
in its direction. For an exhaustive review on very varied related
topics with up-to-date bibliography consult [15]; and for a more
extended review on the impact of statistical physics on social
dynamics, including language modeling, see [16].

The line of research propelled by [14] addresses the modeling
of language coexistence as a competitive dynamics to attract
speakers. In [14] a minimal model was accounted for and in
accordance with experimental data a sounded result spread:
that a two-languages competition for speakers always led to the
extinction of one of the parties. Further analysis of the model
[17,18] shows that it also allows for stable language coexistence,
but the parametric setup needed has not been observed in
any study with available real data. Following the trend, more
complicated models were developed that took spatial or social
structure into account [19–21] or that explicitly introduced
bilingualism [21–27]. This naturally eased the way to solutions
with stable coexisting languages.

As it was advanced before, computer simulations constitute a
favorite tool in this modern wave of scientific approaches to the
study of languages. The results are usually convincing more than
enough and, besides, these numerical studies allow to reach a
depth of knowledge that might be impossible if we should rely
only on very rigorous analytical demonstrations. Despite of this,
many of the most insightful contributions to the comprehension
of human communication follow from meticulous and carefully
proven mathematical constructions, mainly in the study of
grammars and largely aided by methods from computational
sciences [28].

In this paper we intend to make a contribution by analytically
elucidating some existing results in the modeling of language
competition. This is necessarily a rearguard job – since computer
simulations have the lead by far – but we will see how it is
very valuable and necessary. Thanks to the thorough reasoning of
this paper we gain a deep understanding about the dynamics of
speakers of coexisting languages. We focus on amodel of language
competition that allows bilingualism introduced in [24] andwhose
most interesting results were numerically derived in [26]. By
analyzing the model we will come to a better interpretation of the
previous numerical work and we will reach some new results that
are, now, supported by robust analytical proofs.

The paper is structured in the following way: In Section 2 the
hypothesis used in [24] are formulated and the corresponding
equations are derived therefrom. In Section 3 strict mathematical
results are carefully obtained. Whenever the analytic tools do
not reach to fully solve the problem, numerical simulations are
employed, but its presence – usually at the very end of the
chain of reasoning – is always warned to the reader to leave any
minimally uncertain result open to debate. In Section 4 the more
mathematical aspects of the reached solutions are left aside and the
results are analyzed primarily from the point of view of language
dynamics: what does the analytical outcome mean in terms of
coexisting languages?

2. Derivation of the model equations

Closely following the path pointed out by Abrams and Stro-
gatz [14], we work on a model of two competing languages where
bilingualism is an option in between and where the similarity
between the tongues plays and explicit role [24]. The model con-
siders a human population whose individuals might talk either of
two languages X or Y or both of them. Along the text we might
refer to either of the monolingual communities or the bilingual
one as groups, standing for groups of speakers. Naming x and y the
fraction of monolingual speakers of each tongue, and naming b the
fraction of bilingual speakers; two non-linear coupled differential
equations are derived from the following basic hypothesis:

1. Population size remains constant.
2. The probability that an individual acquires a language different

from its current one grows with the status of the new language.
Therefore a status parameter s ∈ [0, 1] of one of the languages
is introduced (being 1 − s the status of the other one). These
statuses are constant and a property of the system of coexisting
languages.

3. It is possible to define a distance between two languages. This
was done in [24] introducing a parameter called interlinguistic
similarity, k ∈ [0, 1]: k = 0 for orthogonal languages, k = 1 for
exactly equal languages—ameasure of how close the languages
are to each other. This allowed to get this distance in an easy and
straight way, by simply fitting percentages of speakers of the
involved languages along time to a set of differential equations.
This interlinguistic similarity is constant and, again, a property
of each pair of languages. This parameter describes howdifficult
it is for a monolingual speaker to learn the other language:
this task should be easier if the languages are more similar to
each other. Another view of it is that the probability that an
individual retains its old language when learning a new one
grows with this parameter k. Thus, the parameter k is the gate
which opens the way to the birth of a bilingual group.

4. The probability that an individual acquires a language different
from its current one grows with the fraction of speakers of the new
language.An exponent a is introduced to ponder the importance
of the fraction of speakers in a group in attracting new speakers
with respect to s and k. Once more, a should be a constant
that characterizes each system of two competing languages.
Existing field work with similar equations [14] shows that the
equivalent parameter in that model varies little across pairs of
coexisting languages, suggesting that social pressure to shift
languages might be a constant through cultures.

Considering different hypothesis or variations on the imple-
mentation of the current ones might lead to different modeling
of the same phenomenon [22,23,25]. In the present paper we fo-
cus on this minimal model whose results could be compared to
data from a real system where the hypotheses are reasonably
met [24,26].

As stated previously, we seek to analytically solve the model
introduced in [24] and test the consistence of the results obtained
in [26]. Therefore we will be working on the set of differential
equations that the authors derived for the dynamics of the fraction
of monolingual speakers of each language. The derivation is as
follows:

We formulate the probability of shifting languages PXY and PYX
and the probability of arriving to (departing from) the bilingual
group fromeachmonolingual group PXB, PYB (PBX , PBY ) based on the
hypothesis listed above:

PXB = ck(1 − s)(1 − x)a,
PYB = cks(1 − y)a,
PBX = PYX = c(1 − k)s(1 − y)a,

PBY = PXY = c(1 − k)(1 − s)(1 − x)a. (1)

c > 0 is a normalization constant [26]. Eqs. (1) are used to reckon
the rates at which the population of the three groups grow
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or decline:
dx
dt

= Fx(x, y),

dy
dt

= Fy(x, y). (2)

A third differential equation exists that tracks the evolution of
the proportion b of bilinguals, but this will not be needed in the
following thanks to the normalization of the population x+y+b =

1. In [26] these equations are written such that the contributions
of all terms from Eqs. (1) can be explicitly read, but here we prefer
a more compact notation so that we can research the vector field
F = (Fx, Fy):

Fx(x, y) = c

(1 − x)(1 − k)s(1 − y)a − x(1 − s)(1 − x)a


,

Fy(x, y) = c

(1 − y)(1 − k)(1 − s)(1 − x)a − ys(1 − y)a


. (3)

For the present study, the parameters are restricted to k ∈

(0, 1), s ∈ (0, 1), and a > 0. Sometimes awill be further restricted.
If this is the case, it will be noted.

As said before, the parameter c normalizes the dynamics and
is irrelevant for equilibrium points and stability issues, therefore
it was not paid much attention in previous literature and neither
will it be paid attention now. The parameter a generalizes
the monotonously increasing dependence of the probability of
transition between languages as outlined in the fourth hypothesis.
This parameter has been found to be larger than 1 and relatively
constant among cultures (a ∼ 1.31) in experimental accounts of
the problem of language dynamics [14,24,26], but we intend to
address the behavior of the system for a > 0, which is a more
interesting generalization. The other parameters that concern us
are k and s.

3. Resolution of the model

3.1. The model yields realistic trajectories

We note that all the possible distributions of speakers among
the different groups can be represented in the x–y space. There,
the condition x + y + b = 1 defines a triangular set A = {(x, y),
x ≥ 0, y ≥ 0, x + y ≤ 1} upon which the components Fx(x, y) and
Fy(x, y) of the vector field F are acting. For the sake of basic consis-
tency of the model, its solutions must be feasible; meaning that a
negative number of individuals in any group should be forbidden:
the dynamics must happen inside A for realistic systems.

Lemma 3.1. Assume the parameter a > 0. The set A = {(x, y), x ≥

0, y ≥ 0, x + y ≤ 1} is positive invariant.

Proof. Let us see that the field defined in Eqs. (3) is directed
inwards in the boundaries of A.

1. If x = 0 and y ∈ [0, 1]:

Fx(0, y) = c(1 − k)s(1 − y)a ≥ 0,

Fy(0, y) = c

(1 − y)(1 − k)(1 − s) − ys(1 − y)a


. (4)

The first inequality implies that the vector field F flows inwards
A since Fx(0, y) ≥ 0 for 0 ≤ y ≤ 1.

2. If y = 0 and x ∈ [0, 1]:

Fx(x, 0) = c

(1 − x)(1 − k)s − x(1 − s)(1 − x)a


,

Fy(x, 0) = c(1 − k)(1 − s)(1 − x)a ≥ 0. (5)

For y = 0 the vector field F flows inwards A since Fy(x, 0) ≥ 0
for any 0 ≤ x ≤ 1.
3. If y = 1 − x:

Fx(x, 1 − x) = c

(1 − x)(1 − k)sxa − x(1 − s)(1 − x)a


,

Fy(x, 1 − x) = c

x(1 − k)(1 − s)(1 − x)a − (1 − x)sxa


. (6)

In this case the field flows inwardsA if and only if−Fx(x, 1−x)−
Fy(x, 1−x) ≥ 0 since (−1, −1) is a normal vector to the straight
line y = 1− x pointing towards the interior of A. That condition
is trivially satisfied and we conclude again that the field flows
inwards into A through the segment y = 1 − x, x ∈ (0, 1).

This lemma means that any real distribution of speakers be-
tween the available groups thatwould evolve according to the pro-
posed equations would remain feasible all the time.

3.2. Number of fixed points of the dynamics in A

It is possible to find upper and lower limits to the number
of equilibrium points that the system displays for different k, s,
and a. We find the equilibrium point of the system wherever the
nullclines (curves defined by dx/dt = 0 and dy/dt = 0) intersect
each other. In A, the equilibrium points that can be detected by a
simple inspection of the system are Px = (1, 0) and Py = (0, 1).
We will term them trivial fixed points. There is another trivial
fixed point for the dynamics, but it lays outside A: the point (1, 1).
Depending on different values of the mentioned parameters we
shall findmore equilibrium points inside A. Following the notation
introduced in this paragraph, we appreciate that the curves x = 1
and y = 1 are branches of the nullclines of the system. We name
them the trivial branches. Our analysis will deal mainly with the
non trivial branches.

With a preliminary analysis of the nullclines of the vector field
(Fx = 0, Fy = 0) it is possible to narrow down the number of fixed
points in the interior of A to a maximum of 3: Equilibrium points
of the dynamics are found in the intersections of the nullclines.
Equating both components of the field to zero we get:

(1 − y)a =
1 − s
s

1
1 − k

x(1 − x)a−1,

(1 − x)a =
s

1 − s
1

1 − k
y(1 − y)a−1. (7)

Multiplying these equations and isolating y:

y =
1

1 +
x

(1−k)2(1−x)

. (8)

Wemust restrict ourselves to x ≠ 1 ≠ y now to avoid divergences
here and in following equations, but this is enough to continuewith
our discussion.

Substituting Eq. (8) into the second expression of Eqs. (7):

(1 − x)a =
s(1 − k)(1 − x)

(1 − s)x


1 −

1
1 +

x
(1−k)2(1−x)

a

⇒


1 − x
x

a−1 
x + (1 − k)2(1 − x)

a
=

s
1 − s

(1 − k). (9)

If (x∗, y∗) is an equilibrium point, x∗ must obey Eq. (9) and the
corresponding y∗ is obtained from Eq. (8).

From the left-hand side of Eq. (9):

g(x) ≡


1 − x
x

a−1 
x + (1 − k)2(1 − x)

a
. (10)
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If a > 1 it is true that:

g(x) > 0, ∀x ∈ (0, 1);
lim

x→0+
g(x) = +∞;

lim
x→1−

g(x) = 0. (11)

Furthermore, g(x) has got a relative minimum and a relative
maximum respectively at:

x−
=

1
2a

1 −


1 −

4a(a − 1)(1 − k)2

2k − k2

 ∈ (0, 1),

x+
=

1
2a

1 +


1 −

4a(a − 1)(1 − k)2

2k − k2

 ∈ (0, 1). (12)

Because all of this, the equation g(x) =
s

1−s (1 − k) can only have
one, two, or three solutions in x ∈ (0, 1) for fixed k and s, restricting
thus the number of equilibrium points of the whole system.

For a = 1, g(x) reduces to a straight line that might or might
not fulfill g(x) =

s
1−s (1−k)within the range of interest x ∈ (0, 1).

Because g(x) is a straight line, this equality can be obeyed for just
one value of x at most. Thus for a = 1 there is at most one more
fixed point within A, but it might not necessarily exist.

Finally, for a < 1 the limits found in Eq. (11) swap:

lim
x→0+

g(x) = 0,

lim
x→1−

g(x) = +∞; (13)

and g(x) > 0 in thewhole range x ∈ (0, 1). It is alsomonotonically
increasingwithin this range and thusmust alwaysmatch s

1−s (1−k)
in exactly one point x∗ internal to A. So for a < 1 there is always
one fixed point besides the trivial ones.

3.3. Stability of the equilibrium points Px = (0, 1) and Py = (1, 0)
for a > 1

This and the three following subsections deal onlywith the case
a > 1, thus the obtained results apply only to such range of the
parameter. We split the research of the system in this way because
some of the analytical tools we used are valid only for restricted
values of a, as it is argued in the next paragraph and in subsequent
subsections.

We assess the stability of the system by evaluating the Jacobian
matrix at the existing fixedpoints, diagonalizing it, and considering
the sign of the eigenvalues. For non trivial equilibrium points it
becomes complicated to exactly locate them on the x–y plane, left
aside its analysis through the Jacobianmatrix; but for Px and Py and
restricting ourselves to a > 1 we can evaluate the Jacobian matrix
explicitly and it happens to be diagonal already:

DF(0, 1) =


−c(1 − s) 0

0 −c(1 − k)(1 − s)


,

DF(1, 0) =


−c(1 − k)s 0

0 −cs


. (14)

Furthermore, the eigenvalues are negative meaning that Px and Py
are asymptotically stable independently of the values of k and s for
a > 1.

Because Px and Py are always stable for a > 1 and the field
is such that all trajectories enter A, if there is only one more
equilibrium point x∗ interior to A it must be a saddle point and lie
exactly at the frontier between the basins of attraction of (0, 1) and
(1, 0). If x∗ were unstable yet not a saddle point, either therewould
exist two more fixed points where the boundaries between basins
cross the frontier of A, or there would exist trajectories leaving A;
and neither of these is the case. If x∗ were stable it would have a
basin of attraction for itself and new fixed points would need to
exist in the separation between different basins.

3.4. Studying the field in different regions of A for a > 1

Now we will get more insights about the dynamics by further
characterizing the vector field F at the boundary of A and in its
interior. For this analysis we must assume a > 1, otherwise some
of the functions that we will be making use of will be ill-defined.

3.4.1. Studying F at the boundary of A
Recalling Fy(0, y) from Eq. (4), we introduce:

Gy(y) ≡ (1 − k)(1 − s) − ys(1 − y)a−1, (15)

and we note that it is continuous on the interval [0, 1), strictly
decreasing on (0, 1/a) and strictly increasing on (1/a, 1). Since:

Gy(0) = Gy(1) = (1 − k)(1 − s) > 0, (16)

we can find out if this function ever changes its sign by evaluating
it at its minimum: Gy(1/a). We get either:

(a − 1)a−1

aa
< (1 − k)

1 − s
s

, (17)

which would imply that Fy(0, y) > 0 ∀y ∈ [0, 1); or:

(a − 1)a−1

aa
≥ (1 − k)

1 − s
s

, (18)

which would imply that there would exist y1, y2 ∈ (0, 1) such
that Fy(0, y) > 0 if y ∈ [0, y1) ∪ (y2, 1] and Fy(0, y) < 0 for all
y ∈ (y1, y2). In this case Fy is zero at (0, y1) and (0, y2). Let us note
that y1 = y2 if the equality holds on Eq. (18).

Likewise, recalling Fx(x, 0) from Eq. (5), we define:

Gx(x) ≡ (1 − k)s − x(1 − s)(1 − x)a−1, (19)

which is continuous on x ∈ [0, 1), strictly decreasing on (0, 1/a)
and strictly increasing on (1/a, 1). Also:

Gx(0) = Gx(1) = (1 − k)s > 0, (20)

thus we find either:

(a − 1)a−1

aa
<

s
1 − s

(1 − k), (21)

which would imply Fx(x, 0) > 0 ∀x ∈ [0, 1); or:

(a − 1)a−1

aa
≥

s
1 − s

(1 − k), (22)

which would imply that there would exist x1, x2 ∈ (0, 1) such
that Fx(x, 0) > 0 if x ∈ [0, x1) ∪ (x2, 1] and Fx(x, 0) < 0 for all
x ∈ (x1, x2). In this case Fx is zero at (x1, 0) and (x2, 0). Once again:
x1 = x2 if the equality holds on Eq. (22).

Let us note that if the strict inequalities (17) and (22) are
simultaneously true then s < 1/2 and if the strict inequalities (18)
and (21) are simultaneously true then s > 1/2.

On the diagonal x + y = 1 the field takes the form written in
Eq. (6) and the signs of Fx(x, 1 − x) and Fy(x, 1 − x) can be studied
analyzing

 1−x
x

a−1
and

 x
1−x

a−1 respectively:



M.V. Otero-Espinar et al. / Physica D 264 (2013) 17–26 21
Since the function
 1−x

x

a−1
is strictly decreasing on (0, 1) and:

lim
x→1−


1 − x
x

a−1

= 0,

lim
x→0+


1 − x
x

a−1

= +∞; (23)

then there exists only one zx ∈ (0, 1) such that


1−zx
zx

a−1
=

(1− k) s
1−s for fixed k and s. Therefore Fx(x, 1− x) < 0 if x ∈ (0, zx)

and Fx(x, 1 − x) > 0 if x ∈ (zx, 1).
With a similar argument for

 x
1−x

a−1 it can be warranted the

existence of only one zy ∈ (0, 1) such that


zy
1−zy

a−1
= (1−k) 1−s

s

for fixed k and s. Then Fy(x, 1 − x) > 0 if x ∈ (0, zy) and
Fy(x, 1 − x) < 0 if x ∈ (zy, 1).

It can be trivially shown that zy < zx. Also it is true that
|Fx(x, 1 − x)| > Fy(x, 1 − x) if x ∈ (0, zy) and Fx(x, 1 − x) <Fy(x, 1 − x)

 if x ∈ (zx, 1).

3.4.2. Further study of Fx
If x ≠ 0 and x ≠ 1, then the points (x, y) which nullify the first

component of the vector field F are those that obey:

y = 1 −


1 − s
s

1/a 1
(1 − k)1/a

x

1 − x
x

1−1/a

. (24)

The function hx : [0, 1] → R is defined as:

hx(x) = 1 −


1 − s
s

1/a 1
(1 − k)1/a

x

1 − x
x

1−1/a

(25)

on x ∈ (0, 1] and hx(0) = 1. It is strictly decreasing on (0, 1/a) and
increasing on (1/a, 1), it has got a minimum at 1/a, and hx(0) =

1 = hx(1).
If y < hx(x) then Fx(x, y) > 0. If y = hx(x) then Fx(x, y) = 0. If

y > hx(x) then Fx(x, y) < 0.
If the parameters of the system are such that inequality (21)

holds, then hx(1/a) > 0 and the plot of hx(x) intersects the
boundary of A at (0, 1) and (zx, 1 − zx) (Fig. 1(a)–(b)).

If the strict inequality (22) holds true then h(1/a) < 0 and the
plot of hx(x) intersects the boundary of A at (0, 1), (x1, 0), (x2, 0),
and (zx, 1 − zx) (Fig. 1(c)–(e)).

Additionally, since Fy(x2, hx(x2)) > 0 and Fy(zx, hx(zx)) < 0,
because Fy and hx are continuous, it is warranted the existence of
p ∈ (x2, zx) such that F(p, hx(p)) = (0, 0)—i.e. a fixed point of F .

3.4.3. Further study of Fy
If y ≠ 0 and y ≠ 1, then the points (x, y) which nullify the

second component of the vector field F are those which obey:

x = 1 −


s

1 − s

1/a 1
(1 − k)1/a

y1/a(1 − y)1−1/a. (26)

We define hy(y) similarly as we defined hx(x). This function is
strictly decreasing on (0, 1/a) and increasing on (1/a, 1), and
hy(0) = 1 = hy(1).

If inequality (17) holds true then hy(1/a) > 0 and the curve
{(hy(y), y), y ∈ [0, 1]} intersects the boundary of A at (1, 0) and
(zy, 1 − zy) (Fig. 1(b)).

If the strict inequality (18) holds true then hy(1/a) < 0 and
the curve {(hy(y), y), y ∈ [0, 1]} intersects the boundary of A at
(1, 0), (0, y1), (0, y2), and (zy, 1 − zy) (Fig. 1(a) and (c)–(e)).

Additionally, since Fx(hy(y2), y2) > 0 and Fx(hy(1 − zy), 1 −

zy) < 0, because Fx and hy are continuous, it is warranted the
Fig. 1. Non-trivial nullclines of the system for different values of k and s and
fixed a = 1.31. Five pairs of parameters (k, s) were used to plot the non-trivial
branches of the nullclines. The values were chosen to compare our results with
those from [26], thus: (a) k = 0.65, s = 0.80, (b) k = 0.20, s = 0.40, (c) k = 0.65,
s = 0.50, (d) k = 0.75, s = 0.35, and (e) k = 0.75, s = 0.35. Stable fixed points
are indicated in red and saddle points in green. Contrary to what was interpreted
in [26], cases (a) and (b) on one side and (c)–(e) on the other side are equivalent to
each other. The five differentiated cases are obvious, though, ifwe attend to the sizes
of certain basins of attraction: some of them can hardly be detected with numerical
systems. We can appreciate in the different figures how important features, like
crossings with the boundary evolve for the different parameters. This can be better
grasped in [29]. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

existence of q ∈ (y2, 1 − zy) such that F(hy(q), q) = (0, 0)—i.e. a
fixed point of F .

The evolution of both hx(x) and hy(y) as a function of the
parameters a, s, and k is partially shown in Figs. 1 and 2, and can
be dynamically explored in [29].

3.5. The nature of the orbits helps us assess the stability of non-trivial
fixed points

The nullclines are always landmarks of the dynamic system
under research. Their obvious use is to locate the equilibrium
points in their intersections, butmore information canbe extracted
if we look at them carefully. In Section 3.4 we used them to
find out how the vector field behaves in the boundaries of A as
they mark the sets of points where the vertical and horizontal
components of F are nullified. This applies also in the interior of A:
The trajectories of the systempass bywith vertical tangent through
the points of the curve Fx(x, y) = 0, and with horizontal tangent
through the points of the curve Fy(x, y) = 0. But also, these curves
divide A in regions within which the signs of Fx and Fy are well
determined. Topological arguments regarding the action of F upon
these different regions of A help us put some limits to the kind of
orbits that the system can yield:wewill see that periodic dynamics
can be banned. These considerations also let us find out whether
non-trivial points are stable or not for a > 1.

In this range of a the system will always have at least one
more equilibrium point in the interior of A. We have seen that
this can be deduced either from the crossings of hx(x) and hy(y)
with the boundary of A or from Eq. (9) attending to the shape of
g(x). The analysis of g(x) let us further know that also two or at



22 M.V. Otero-Espinar et al. / Physica D 264 (2013) 17–26
Fig. 2. Non-trivial nullclines of the system for different values of a. Fixed k =

0.65 and s = 0.50 is taken except in panel (c). This figure illustrates how the non-
trivial branches of the nullclines suffer a sudden change as the parameter a starting
from a < 1 increases through a = 1 and to a > 1. (a) For a < 1 the nullclines must
always cross inside A. (b) a = 1 is the only case when the nullclines are straight
lines that go through (0, 1) and (1, 0) respectively. As straight lines, depending
on their slopes they might cross inside A, but this is not necessarily the case ((c)
a = 1, k = 0.3, and s = 0.75). (d) For a > 1 the shape of the nullclines becomes
more complicated and the possible crossings must be carefully addressed. We saw
the many possibilities in Fig. 1.

maximum three fixed points can exist inside A. These three, two,
or one equilibrium points will show up depending on the values
of the parameters s, k, and a. Many possibilities are illustrated in
Fig. 1 and in [29].

With this in mind, let us consider the following regions:

R1 = {(x, y) ∈ A | Fx(x, y) < 0, Fy(x, y) > 0},

R2 = {(x, y) ∈ A | Fx(x, y) > 0, Fy(x, y) < 0}. (27)

Equivalently:

R1 = {(x, y) ∈ A | x ≤ hy(x), y ≥ hx(x)},

R2 = {(x, y) ∈ A | x ≥ hy(x), y ≤ hx(x)}. (28)

In a similar way we could introduce:

B1 = {(x, y) ∈ A | Fx(x, y) > 0, Fy(x, y) > 0},

B2 = {(x, y) ∈ A | Fx(x, y) < 0, Fy(x, y) < 0}; (29)

but these will not be interesting for us right now.
Focusing on R1 and R2, they have got one or two connected

components depending on if inside A there exist one, two, or three
equilibrium points. We shall write R1 = A1 ∪ A3, R2 = A2 ∪ A4;
being A3 or A4 empty if on the interior of A there are not three
equilibrium points, and A1 and A2 the regions whose boundaries
contain respectively Py = (0, 1) and Px = (1, 0). An account of
these regions for some values of the parameters can be seen in
Fig. 3.

Taking into account the sign of the components of the vector
field we can tell that regions A1, A2, A3, and A4 are positive
invariant. If (x0, y0) ∈ A1 then its trajectory (x(t), y(t)) for t ∈

[0, ∞) lays in A1 because in the boundary of A1 the field points
inwards. This trajectory is thus contained in a compact for t ∈

[0, ∞). Also, since dx(t)
dt < 0 and dy(t)

dt > 0, it can be verified
that x(t) is monotonously decreasing and y(t) is monotonously
increasing for t ∈ [0, ∞). Consequently it exists the limit
limt→+∞(x(t), y(t)) = Py. The set A1 is therefore contained in
Fig. 3. Positive invariant regions R1 and R2 on the x–y. We identify R1 , where
Fx is negative and Fy is always positive (green in the figure); and R2 , where Fx is
positive and Fy is negative (red regions). (a) a = 1.40, s = 0.50, k = 0.65. Three
equilibrium points exist inside A and regions A3 and A4 are non-empty. Both R1
and R2 present two connected components (A1 and A3 , and A2 and A4 respectively)
which are, each of them, positive invariant. This means that the dynamics do not
exit any of these regions once they enter: they must tend to a stable fixed point
in their boundary. Thus, we see how points inside A1 are taken to Py and points
inside A2 are taken towards Px . The only possibility for regions A3 and A4 is that
it exists another stable fixed points exactly in the joint between the two of them.
(b) a = 1.31, k = 0.20, s = 0.40. In this case only one equilibrium point exists
inside A. Regions A3 and A4 are empty, but the same as before applies to regions A1
and A2: points in their interior must be driven towards Py and Px respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

the basin of attraction of Py. Analogously, it can be shown that if
(x0, y0) ∈ A2 then limt→+∞(x(t), y(t)) = Px: its trajectory lays
in the region of attraction of Px; thus, the basin of attraction of Px
contains A2.

Also, if A3 and A4 are both non-empty and (x0, y0) ∈ A3 ∪ A4
its trajectory remains either inside A3 or inside A4 and converges
towards the equilibrium point at the intersection of the frontiers
of these regions. Since A3 and A4 are non-empty only when there
are three equilibrium points inside A, this result means that one
of these three points, whenever they exist, must be stable. In this
case we can determine that the two remaining fixed points in the
interior of A must be saddle points. We do so with an argument
similar to the one we used to show that x∗ is a saddle point when
only one equilibrium point exists inside A (Section 3.3). We further
deduce that the case with two interior fixed points corresponds
to a saddle–node bifurcation and that this situation is the frontier
between those cases with one and three equilibrium points in the
space of parameters k − s.

Concerning the dynamics of the system, it is important the
following lemma which ensures that there is no oscillatory
behavior:

Lemma 3.2. There are not any periodic orbits in the x–y plane.

Proof. Actually, because of the regularity of the vector field F ,
applying the Poincaré–Bendixson theorem it can be deduced that
if there would exist any closed orbit it must enclose a fixed point
on its interior. Thus, the periodic orbit would necessarily enter and
exit two of the regions Ai. This cannot happen because all regions
Ai are positive invariant.

This same argument also implies that fixed points cannot be
foci, because trajectories approaching them should cross many
times the frontiers between regions, some of which are positive
invariant and cannot be left.

3.6. Nature of the orbits and higher order contributions

Lemma 3.2 brings in an important contribution. It is clear its
mathematical meaning: because of the nature of the vector field
F ≡ (Fx, Fy) around a fixed point it is not possible to find closed—
i.e. periodic-orbits. Furthermore, any solution must consist of an
exponential decay towards a fixed point: an oscillatory decay is
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not possible. The interpretation of this result is rather strong when
it comes down to languages: the extinction or raise of languages
must be a monotonous phenomenon according to the present
equations. Tendencies that could be expected, e.g. alternation
in the preponderance of a language in a region, should not be
observed.

This lemma has got also some implications even if we would
consider higher order or stochastic extensions of the present
model. The equations investigated in this paper are a deterministic,
mean field approach to a phenomenon that usually takes place
on a stochastic environment. The next more realistic strategy to
model language competition or coexistence departing from our
current equations would be simulations of discrete agents that
shift between the monolingual or the bilingual groups at random,
being the transition probabilities given by Eqs. (1). This is coherent
if we suppose some free-will and variability to the speakers
when deciding what language to use. We expect thus intrinsic
stochasticity to be present and manifest throughout noise. The
power spectrum of this noise can be investigated. The nature of the
equilibrium points found for Eqs. (2) establishes some important
limitations to the kind of dynamics that can arise, as we will argue.

Several techniques are available in the literature to incorporate
uncertainty in a deterministic model, from agent-based simula-
tions with stochastic interaction events [30,31] to theoretical con-
siderations of a more analytical nature [32–34]. According to [35],
we can determine that some interesting phenomena are ruled out
from our model because of the lack of foci fixed points (again,
recalling Lemma 3.2). Namely, it is not possible to find Stochas-
tic Amplification of Fluctuations (SAF), a phenomenon that offers
a possible explanation to emergent quasi-oscillations observed in
fields as diverse as ecology [34], epidemiology [36], or brain dy-
namics [35,37]. In SAF the spectrum of the noise would present
a prominent peak corresponding to these quasi-oscillations. Op-
posed to this, in our study case the power spectrum of intrinsic
noise must present a monotonous decay proportional to 1/ω2, and
no outstanding peaks.We confirmed this result formany sets of pa-
rameters with agent-based simulations, as suggested above, find-
ing no interesting features in the spectra, in agreement with the
SAF theory.

SAF, if present, would be self evident in agent-based simula-
tions. It could also be noted in series of real data if reports of
language usage over time with enough precision were available.
SAF is usually associated with adaptive reacting forces such as
prey–predator or activator–repressor dynamics. Thus, reports of
emergent oscillations in language dynamics could warn us of the
presence of such forces driving language competition and serve for
further, necessary refinement of the model. Numerical evidence
shows that periodic solutions may appear if the status s of the lan-
guages were allowed to change over time, which is a rather real-
istic extension of the model. Also, if there would exist models of
language coexistence that presented SAF in a natural way, the ob-
servation (or the not observation) of this phenomenon in real data
could help us determine which one is closer to reality.

3.7. Tentative solutions for a ≤ 1

Splitting the problem in a > 1 on the one side and a ≤ 1
on the other made its solution easier because several of the
reasonings that work very well in the former case are built on
mathematical objects that are ill-defined in the later. An example
are the functions Gx(x) and Gy(y), but also the Jacobian matrix in
(1, 0) and (0, 1) presents some problems if a < 1. Luckily enough,
in Section 3.2 we proved that there is just one more equilibrium
point (x∗, y∗) for a ≤ 1 which always appears if a < 1 and that
might not appear for a = 1 depending on the parameters k and
s, so we do not need to investigate 3 prospective fixed points as
for a > 1. Also it is still valid the demonstration that A is positive
invariant made in Section 3.1. An important result that is not valid
anymore refers to Px and Py, which happen to be stable for any
parameter setup with a > 1. Among other considerations, in this
section we assess the stability of these fixed points for the new
range of the parameter a ≤ 1.

In Fig. 2 the nullclines are represented for various values of a and
fixed k and s. We can observe (x∗, y∗) in the intersections, and we
can also observe how the nullclines suffer a deep transformation as
soon as values of a larger than 1 are employed.We shall study now
the cases a = 1 and a < 1. Because the analytic results are not so
satisfactory in some of the new scenarios, we shall complement
them using numerical simulations whenever it is useful. These
results should be questioned as long as a complete mathematical
proof is not available.

The stability of Px = (1, 0) and Py = (0, 1) for a = 1 can be
solved analytically. The Jacobian matrix in this case reads:

DF(0, 1) =


−c(1 − s) −c(1 − k)s

0 −c(1 − k)(1 − s) + cs


,

DF(1, 0) =


−c(1 − k)s + c(1 − s) 0

−c(1 − k)(1 − s) −cs


. (30)

The eigenvalues areλ1
Py = −c(1−s) andλ2

Py = −c(1−k)(1−s)+cs
for Py and λ1

Px = −c(1 − k)s + c(1 − s) and λ2
Px = −cs for Px.

We see that one of the eigenvalues is always the sum of two terms
with different sign and this compromises the stability of Px and
Py. Indeed, their stability depends now on the parameters k and
s. By equating the conflictive terms to zero we obtain two curves
relating k and s:

sPy =
1 − kPy
2 − kPy

,

sPx =
1

2 − kPx
. (31)

These curves tell us where does the stability of Px and Py change in
the space of parameters k−s: Px is stable for s > sPx and Py is stable
for s < sPy . There is a region of values sPy < s < sPx where neither
Px nor Py are stable and, since there are not any trajectories leaving
A, there must exist a point (x∗, y∗) interior to A that is stable.

The curves sPx(kPx) and sPy(kPy) are plotted in Fig. 4(a). There
it is shown the stability of the different stable points for different
values of a in the k − s space, but aided by computer simulations.
We see that the numerical results match the analytical results for
sPx(kPx) and sPy(kPy), and that these curves seem to evolve into
the boundaries between different regimes as a takes values larger
than 1.

For a < 1 it is not possible to work out the stability of Px
nor Py in a rigorous way. The Jacobian matrix has diverging terms
in this case: it is not well defined. We know, though, that there
is always a third fixed point inside A and computer simulations
suggest that this interior equilibrium point is always stable for
a < 1. This would be in agreement with results obtained for the
simpler precursor model [14] where a similar stable point is found
for a < 1 [21,27].

4. Discussion and conclusions

The analytical results that we reached here are in partial discor-
dancewith those reported fromprevious numericalworks [26]. Al-
though the number of fixed points reckoned now could agree with
previous accounts, the stability of them has been misread because
of reasons thatwill be obvious right now.Notwithstanding this, the
conclusions from [26] remain largely the same, as we will see. We
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Fig. 4. Regions of the k − s space with different number of equilibrium points.
(a) a = 1: The results from Section 3.3 guaranteeing the stability of Px and Py for any
(k, s) apply only for a > 1. The stability of these points is thus challenged for a = 1.
It is possible to compute analytically the curves sPy (kPy ) (thick black) and sPx (kPx )
(thick red), which determine the frontiers above (below) which Py (respectively Px)
are unstable. The green area inwhich both Py and Px are unstable need the existence
of an equilibrium point inside A which is stable to attract the dynamics. The blue
regions correspond to values of the parameters where either Px or Py are stable,
but only one of them; meaning, in terms of competing languages, that one tongue
must extinguish the other whatever the initial conditions.While the curves sPy (kPy )
and sPx (kPx ) were computed analytically, the colored regions were found through
computer simulations: a point of the k−s spacewould be painted in blue if either of
the attractors Px or Py were found after evolving the system a time large enough, and
it would be painted in greenwhenever the simulations did not converge towards Px
nor Py in a similar number of iterations. Numerical and analytical results agree. (b)
a = 1.1, (c) a = 1.31, (d) a = 1.5: In either of these cases blue regions indicate that
only the attractors Px and/or Py have been detected: both of them were detected in
dark blue regionswhile only one of themwas detected in lighter blue regions. Green
regions indicate now that an attractor P∗ interior toAhas been detected: the darkest
area correspondwith P∗ being detected along Px and Py and the lighter areas means
that one or two of Px and Py have not been detected. All these attractors were found
numerically. The different shades of blue and green aim at demonstrating how the
stability of the fixed points Px and Py depending upon k and s has been misread in
previous studies of the model [26]. The outcome of the simulations are consistent
with the analytical results, but they must be taken as strict approximations as long
as they remain numerical conclusions. We found an interesting case in panel (c)
that corresponds to a = 1.31: the value previously used in the literature to fit
real data. Thick black lines indicate the transversal sections alongwhich bifurcation
diagrams are taken in Fig. 5. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

first discuss the results for a > 1 to compare directlywith previous
works and then we make some remarks about the cases a ≤ 1.

In [26] the stability of the system was assessed through com-
puter simulations only, thus stable fixed points were partly iden-
tified. Non-stable or saddle points did not stand out in these
simulations because specific tests were not run therefore. It was
concluded that one, two, or three stable equilibrium points existed
in A, including the trivial ones at its boundary: Px, Py, and P∗

=

(x∗, y∗); the later being the only equilibrium point explicitly de-
tected in the interior of A. This matches exactly the picture drawn
from the currentwork. Thediscrepancies arise regarding the stabil-
ity of Px and Py: The computational tools used in [26] yielded a re-
sult that strongly suggested that this stability depended upon k and
s (dependence upon a was not addressed: it was taken a = 1.31
for historical reasons) and that P∗ was stable whenever it could be
detected by simulations—as it could only be detected if it was an
attractor of the dynamics in the discretized version of Eqs. (2).

A plot was elaborated in [26] that divided the k − s space
of parameters in five regions that would correspond to five dif-
ferent stability/instability combinations of the equilibrium points.
Namely: (i) only Px or only Py is stable, P∗ is not detected; (ii) both Px
and Py are stable, P∗ is not detected; (iii) the three possible points
are detected and stable; (iv) P∗ and either only Px or only Py are
stable; and (v) only P∗ is stable. In all five cases Px and Py were sup-
posed to exist and to be unstable whenever their basins of attrac-
tion were found empty by the computer simulations. An updated
version of that plot is reproduced in Fig. 4(c) with the same five
regions colored with different shades of blue and green.

The interpretation given in [26] was not right although it was
consistent with the numerical outcome. For example: we now
know that Px and Py are always stable for a > 1, disregarding
the values of k and s. We also know that at least one equilibrium
point exists always in the interior of A, whichmay not be stable and
which may lay in the boundary between the basins of attraction of
Px and Py. In Fig. 1 they are shown the plots of the nullclines for
the exact same parameters as those used in [26] and we readily
see how for certain parameters some saddle points interior to A
approach Px or Py leading to a reduction of their basins of attraction.
We now know that these equilibrium points never collapse into an
unstable point. A basin of attraction may become undetectable to
numerical means, and thus Px and Py may be deemed unstable; but
we have now found out analytically that Px and Py remain stable
for any value of k and s if a > 1. We were able to reproduce
this numerical effect for the parameters used in [26] and for
many others, as it can be seen in Fig. 4(b)–(d): lighter shades of
blue or green indicate sets of parameters for which the computer
simulations led to a wrong interpretation of the stability of some
of the fixed points.

For a > 1, the updated,more correct picture is as follows: There
are always 2 stable trivial fixed points Px and Py and depending
on the parameters k and s there are 1, 2, or 3 more fixed points
in the interior of A. It can be shown that if three points exist,
one of them (termed P∗) must be stable. It can be argued that if
there is only one fixed point inside A it must be a saddle point;
and that if there are three, those equilibrium points different from
Px, Py, and P∗ must be saddle points as well. It can be guessed that
the situation with 2 equilibrium points inside A corresponds to a
saddle–node bifurcation as we transit through the k− s space from
a region with one to a region with three non-trivial fixed points.
The existing analytical evidence and Fig. 4, that shows the results
of refined numerical simulations, are consistent with this view;
although those facts that were not analytically proven in Section 3
must be taken with enough care.

These equilibrium fixed points and their stability have got a
direct interpretation for the phenomenon for which the model
was developed in the first place: they determine whether two
coexisting languages would remain alive together, or if one of
them is going to take over and extinguish the other. Also, the
nature of the fixed points reached by the dynamics determines
whether individual bilingualism can be a stable trait. Given a pair
of languages X and Y that coexist with status sX = s and sY = 1− s
and interlinguistic similarity k in a society with a fixed value of
a > 1, the model presents two well differentiated regions:

1. Coexistence is unstable: one language ends up suppressing the
other and the bilingual group. What language survives depends
on the initial distribution of speakers among monolinguals of
each language and bilinguals. This case corresponds to only
one equilibrium point – which turns out not to be stable – in
the interior of A and is depicted in Fig. 1(a)–(b). The regions
in the k − s space where this happens are colored in blue in
Fig. 4(b)–(d).

2. Coexistence is possible depending on the parameters k, s, and a;
and on the initial conditions of the dynamics. This case is the one
with three stable equilibrium points Px, Py, and P∗. The initial
conditions determine whether a language drives the other to
extinction andmakes bilingualismdisappear, or if a steady state
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Fig. 5. Bifurcation diagrams. Qualitative bifurcation diagrams are shown for fixed a = 1.31 with: (a) varying k and fixed s = 0.5 and (b) varying s and arbitrary k close to
0.8. Beginning with low k, when varying this parameter while holding s fixed we depart from a situation in which Px and Py are stable and only one extra equilibrium point
exists in the interior of A, a saddle point. Above a certain value of k a new stable fixed point P∗ comes into existence. For varying s and fixed k, if k is large enough – as it is
the case in this example – they exist two values of s between which the third stable equilibrium P∗ point exists. The trajectory of P∗ through the x–y space is qualitative in
both cases.
is reached (P∗) inwhich groups ofmonolingual speakers of both
languages survive along with a bilingual group. This is what
happens in Fig. 1(c)–(e); and parameters k−s for whichwe find
this situation are indicated in green in Fig. 4(b)–(d).

A third case regarding number of fixed points would exist at
the boundary between these regions, but it does not seem to
introduce any new behavior attending to the coexistence of
languages. Coming back to the incomplete interpretation made
of the results in [26], the two cases just outlined already include
those configurations of parameters for which some attractors are
so small that the extinction of a language or the coexistence of
both of them is almost unavoidable without regard of the initial
conditions; although we now know that this is never the case.

We can see from the numerical simulations in Fig. 4 that regions
of the k− s space where stable bilingualism is possible correspond
to those with a more balanced status between languages. This
balance is not so important for larger interlinguistic similarity:
then a stable bilingual situation can be reached even for well
distinct sX and sY , depending on the initial distribution of speakers.
Further illustration of the role of k and s is made in Fig. 5, that
shows qualitative bifurcation diagrams of the stable fixed points
when varying these parameters with fixed a.

The parameter a was found relatively constant among cul-
tures [14] as indicated before, and this justified why it was not
payed that much attention. But nowwe have also studied how the
possible outcomes change as a varies. First, considering only a > 1,
we see (Fig. 4) that a larger a means that the possibilities for sta-
ble bilingualism are reduced. This parameter was already consid-
ered in an analysis of the more basic Abrams–Strogatz model [18,
21,27], and it was cleverly termed volatility parameter: the lower
a the more volatile a large group becomes and vice-versa. Thus, for
larger a bigger groups are more persistent and it is smaller the set
of parameters for which it can be reached a more diluted distribu-
tion of speakers (this would be: a solutionwith speakers belonging
to the bilingual groups, or communities with monolingual groups
of each language coexisting together). For lower a, larger monolin-
gual groups are not so permanent and a steady solution is easier to
reach in which all languages coexist.

This volatility is a critical feature at a = 1: Px and Py become
unstable for some of the parameters k and s as it was said before. In
terms of language dynamics this means that a monolingual group
agglutinating all the speakers is no longer possible, whatever the
initial conditions, if their statuses are close enough and depending
on the similarity between languages. The region of the k − s space
where this happens can be seen in green in Fig. 4(a). In such
cases the only stable solution in the long term is the coexistence
of the monolingual groups along with the bilingual one. But still
at a = 1 one language might extinguish the other if its status
is larger enough. There is a crucial difference between such an
extinction and those happening for a > 1: before, both languages
could survive depending on the initial number of speakers of each
one; now the extinction does not depend on this initial condition if
the parameters are those needed for a language to take over (blue
regions in Fig. 4(a)).

The possibility of language extinction seems to change com-
pletely for a < 1: then the volatility is so high that themonolingual
options are never stable and the survival of both languages within
their monolingual groups and along a bilingual group of speakers
is guaranteed for any values of the parameters k and s, and for any
initial distribution of speakers. It was not possible to prove this
very last result analytically beyond any doubt and it was obtained
thanks to numerical simulations. This solution is consistent with
similar outcomes for the seminal Abrams–Strogatz model [18,21,
27], which should be the limit case for k → 0 and b → 0 of the
equations under research in this paper.

4.1. Comparison with similar models

It is not the aim of this article to exhaustively review the litera-
ture on language competition and the importance of bilingualism
in such dynamics. For an extended analysis we refer the reader to
a recent work [27] where more, different approaches are studied;
including some treating spatial or social structure, whose role on
language competition should not be ignored. Without the inten-
tion of going as far as in [27], it is valuable to compare the mathe-
matical setup and the outcome of our model with results from two
very similarmodels, namely those introduced byMinett andWang
[22,25] and by Castelló et al. [21,23].We shall refer to themasMW-
model and BM respectively, BM standing for Bilingual Model. We
will also be referring to the original model by Abrams and Stro-
gatz [14] as AS model for simplicity.

Both the MW and the BMmodels are generalizations to include
bilingualism in the original AS model. While Wang and Minett fo-
cus on intervention policies thatwould allow a language to survive,
Castelló et al. proceed to detailed analysis that stem from statisti-
cal physics and interestingly frame the two language competition
problem within the broader consensus problem with the novelty
that two options are allowed at the same timewhenever individual
bilingualism is present.

Regarding the mathematical hypothesis, both models assume
transitions from monolingual to bilingual groups (and vice-versa)
driven by population size in themonolingual groups and status pa-
rameters. Themodels do not introduce an interlinguistic similarity
parameter. As in the model by Abrams and Strogatz, a volatility
parameter a is always included. The MW model is notably more
complicated because it includes vertical (from parents to children)
and horizontal (an agent changing its language competence) trans-
mission, all of this encoded in up to seven parameters—in contrast
with the two parameters of the BMmodel. With these ingredients,
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the authors derive equations similar to Eq. (2) and proceed to their
resolution or simulation with discrete agents.

We would like to remark that in both MW and BM models
direct transitions between monolingual groups are forbidden so
that a language shift is always a two-step transition mediated by
a bilingual stage. Following Eqs. (1)–(3); transitions are allowed
between any two groups in the model that we study: we do
not impose that monolingual groups are not directly accessible
from each other. Thus, we are rather dealing with a population
renewal model. Interestingly, numerical integration of the model
equations [24,26] shows for many sets of parameters how a
language shift at a population level can bemediated by a temporary
rise of the bilingual group. This echoes at a societal level the
mechanism for individual language shift hypothesized in the MW
and BM models. Very interestingly, the results by Castelló et al.
clearly indicate that the bilingual individuals are a minority that
acts as an interface between the two monolingual groups in their
model. The fact that in our model the bilinguals can become
majority while still acting as an interface during language shift is a
differential fact that could be directly tested with real data [24,26].

Both MW and BM models obtain coexistence between the two
languages for a below a critical value a∗. This also happens in
the original AS model and in the model studied in this paper, as
it was discussed above. It is worth indicating that the result in
the AS model would imply a societal bilingualism with segregated
monolingual populations, but can never account for individual
bilingualism. Minett and Wang dismiss this result for realistic
scenarios [25] because a has always been found above the critical
value when data from language coexistence has been analyzed
[14,24,26].

For any of the compared models, this state with coexisting lan-
guages for a < a∗ is always achieved notwithstanding the other
parameters. In our analysis we find other possibilities for coexis-
tence with a > a∗ (in our case a∗

≡ 1). The number of fixed
points and attractors in our results is radically different from the
case a < a∗ and the k and s parameters, as well as the initial condi-
tions, play a very important role. Also, Px and Py remain stable for
a > 1, which does not happen in any of the coexistence scenarios
found for a < a∗ in [18,21,23,25]. It is thus fair to say thatwe obtain
a qualitatively different result from those of previous authors. This
would be another fact that could be used to confront the different
models with real data.

These coexistence scenarios with a > 1 should be compared,
though, with the intervention procedure studied by Minett and
Wang [25] as the number of speakers of a language falls below a
threshold (say x < xθ ). This intervention increases the status of a
language or eases its learning to new speakers when the tongue
looses population support. In this case, for certain values of the
parameters the model can attain a stable state with coexistence
also for a > a∗, but always through such an intervention. The
population of the endangered language stabilizes then around the
threshold value that triggers the intervention xθ , indicating how
bounded this result is to the intervention. We shall note that in
our model a punctual and lasting modification of the status of the
languages could also move the system into an attractor leading
to stable coexistence, but the distributions of speakers reached
would eventually become that natural of the new attractor—
i.e. the distribution of speakers at the new fixed point (x∗, y∗),
not necessarily bearing any resemblance with the population
distribution when the intervention took place.
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