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Abstract
This contribution explores some analogies between special relativity and
geometrical tools developed by the ancient Greeks. The kinematics of one-
dimensional elastic collisions is solved with simple ruler-and-compass con-
structions on conic sections. Then, a thought-provoking relation involving
Lorentz transformations, Archimedes’ law of the lever and Einstein’s formula
for the relativistic mass is put forward. The familiarity with classical geometry
is useful in developing intuitions on deep concepts of modern physics and can
be profitable for high school or basic undergraduate teaching. Moreover, it is
fascinating to establish a bridge connecting beautiful ideas separated by two
millennia.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Special relativity constitutes one of the summits of modern science. Still, most of its con-
ceptual novelties remain far from being familiar to the layperson more than a century after its
inception by Albert Einstein. More than two millennia earlier, the ancient Greeks, including
Euclid and Archimedes among other salient figures, developed important geometrical tools as
well as a handful of notions that lie at the basis of classical physics. The layperson is by far
more acquainted with these old concepts. Thus, it is appealing to attempt to establish some
connection between these ideas, both with an educational goal, as well as to find a bridge
linking two periods of the human culture that are arguably the most influential in building our
current ideas about the physical world.

As early as in 1907, Minkowski famously introduced the notion of spacetime [1], a stage
where all physical phenomena take place, replacing the Euclidean space and the universal
clock customarily used since Galileo. The concept became central to the subsequent devel-
opment of physics, quickly going from a mathematical tool to a physical reality. Einstein
realised that energy and matter source the curvature of the spacetime fabric and move under
its spell. Most strikingly, its minuscule vibrations have been recently detected in awe [2].

Minkowski soon realised that the spacetime diagram is a useful framework that leads to a
visual display of events and their relationships (simultaneity, causality, time dilation) [3]. This
was further developed by many people, starting from Max Born [4] and Paul Gruner [5].
Much more recently, Takeuchi [6], Mermin [7, 8] and Salgado [9], among others, have
followed Minkowski’s footsteps, and graphical representations of special relativity keep
being an object of current interest. They are profitable with didactical purposes at the high
school or undergraduate level, for science popularisation as well as for conveniently visua-
lising otherwise abstract expressions.

Along this line, the aim of this article is to stand on earlier contributions and supplement
them with some geometrical methods developed by the ancient Greeks. Concretely, the
discussion makes use of properties of conic sections, ruler-and-compass constructions and
Archimedes’ law of the lever. It will be shown that they can be converted into useful tools for
the understanding of relativistic concepts. Since didactics based on geometry is frequently
used as a supplement of algebraic developments, the approach might be interesting for
introductory courses on special relativity.

The particular questions of special relativity that are addressed below are the kinematics
of elastic collisions (section 2) and the increase of a body’s inertia due to its state of motion
(section 3). Some comments regarding the educational potential of the construction are
presented in section 4.

In the following, the symbol m represents the rest mass and natural units c=1 are used.

2. Geometrical methods for elastic collisions

In this section, the kinematics of one-dimensional elastic collisions is considered by using
geometrical methods in the momentum-energy plane [10]. Both the relativistic and non-
relativistic cases will be discussed. The dispersion relations are, respectively:
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The velocity is given by v=dE/dp. The additive constant in the non-relativistic expression
is immaterial, since only energy differences and not the absolute value of energy are
important in that case. Thus, it can be arbitrarily chosen and the most natural choice when
discussing non-relativistic physics is to set it to zero. However, if one thinks of that
expression as the small velocity limit v=c or p=m of the relativistic one, then the
constant is identified with the rest mass m. This will be the choice made below when plotting
figure 4.

The expressions in (1) correspond, in the p–E plane, to families of hyperbolas and
parabolas, both conic sections, parameterised by the mass m. The study of conic sections was
introduced in ancient Greece by Menaechmus, developed by Aristaeus the Elder, Euclid and
Archimedes, and stunningly extended and formalised by Apollonius of Perga [11].

Consider the elastic collision of two incoming bodies of masses m1 and m2 with some
given momentum and energy. By definition, the outcome consists of the same bodies with
different individual p and E, but preserving the total momentum and energy. Surely, the
outgoing values of p and E can be found algebraically from (1), but the goal here is to find
them with a ruler-and-compass construction in the p–E plane. In the centre of mass frame
(vanishing total momentum), this is rather trivial since for each particle one simply takes p →

−p, see figure 1.
In order to address the case of a general inertial reference frame, notice that a boost of the

situation of figure 1 must produce a parallelogram with the same area as the rectangle of the
figure. This is a direct consequence of the properties of the Lorentz transformation, which
preserves parallelism and areas in the p–E plane. This fact, together with the geometrical
peculiarities of the hyperbola lead to the simple solution depicted in figure 2.

Given the hyperbolas and the initial points i1, i2, the solution is found in two steps:

(i) Find C as the middle point between i1 and i2.
(ii) Draw parallel lines to the OC segment from i1 and i2. The momentum and energy of the

outgoing bodies, represented by f1 and f2 are the intersection of these lines with the
hyperbolas.

A geometrical proof of this construction relies on a non-trivial feature of hyperbolas
discovered by the ancient Greeks. Energy-momentum conservation requires that i1f2i2f1 is a

Figure 1. Kinematic solution of a relativistic one-dimensional elastic collision in the
centre of mass frame. The initial momentum and energy of the colliding bodies are
represented by i1, i2 and the final ones by f1, f2. The point C is the centre of the
rectangle connecting them. The two hyperbolas, parameterised by the masses m1 and
m2 correspond to the dispersion relation of (1).
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parallelogram since only in that case C is the midpoint of both diagonals. Assuming the
parallelogram exists, it can be shown that i1f2 and f1i2 are parallel to OC as follows. It was
known to Apollonius of Perga that a straight line connecting the midpoints of two parallel
chords of a hyperbola is a diameter [11], i.e. it passes through the centre, named O in figure 2.
Since two hyperbolas of different m are simply rescalings of each other in the p–E plane, it
immediately follows that the statement can be generalised to parallel chords of any hyperbolas
defined by (1). This assertion implies that the OC line cuts the f2i2 and i1f1 segments at their
midpoints. Clearly, the other sides of the parallelogram are parallel to the line connecting
these midpoints, a fact that fully justifies the ruler-and-compass method described above.

It is worth pointing out that an interesting alternative geometrical solution of the same
problem was presented by Bokor [12]. The technique described here is simpler, in the sense
that it does not use auxiliary hyperbolas and therefore it can be carried out with ruler and
compass on a piece of paper where the hyperbolas of (1) are drawn.

An interesting application of the procedure is the kinematical solution providing the one-
dimensional version of the Compton shift. Consider a photon with momentum pi1 and energy
Ei1 impinging on a free electron at rest (pi2=0, Ei2=me). The photon is backscattered and
the electron takes part of its initial kinetic energy. The graphical solution is depicted in
figure 3. Notice that, since the photon is massless, the hyperbola degenerates into two straight
lines E p= ∣ ∣.

Figure 2. Kinematic solution of a relativistic one-dimensional elastic collision in an
arbitrary inertial frame. The initial momentum and energy of the colliding bodies are
represented by i1, i2 and the final ones by f1, f2. The point C is the centre of the
parallelogram connecting them.

Figure 3. Kinematic solution of an example of one-dimensional Compton scattering.
The auxiliary point A is placed at p E p0, fA A 1= = ∣ ∣.
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It is possible to extract the shift in the wavelength of the photon by using simple
trigonometric arguments in the figure. By construction, the f1i2 segment is parallel to OC and,
therefore, the two angles marked as j have the same value. Thus:

m p

p

p m

p
tan , 2

e f

f

i e

i

1

1

1

1

j =
-

=
+∣ ∣

∣ ∣
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( )

where the first equality stems from the f1Ai2 triangle and the second one uses that C is the
midpoint between i1 and i2. Then, p m p m p2f e i e i1 1 1= +∣ ∣ ( ) and, inserting the relation
between wavelength and momentum of a photon p h l=∣ ∣ , the solution yields

h

m

2
3f i

e
l l- = ( )

which is the well-known Compton formula 1 cosh

m
l qD = -( ) for backwards scatter-

ing (θ=π).
Let us now turn to the one-dimensional collision in the non-relativistic case. It is not

necessary to draw the parabolas to find a graphical solution [13]. However, it is illustrative to
work out the kinematics in terms of a parallelogram similar to that of figure 2. The
corresponding ruler-and-compass construction is depicted in figure 4.

Given the parabolas and the initial points i1, i2, the solution is found in two steps:

(i) Find C as the middle point between (p1, m1) and (p2, m2). Beware that none of these
points lie on the parabolas.

(ii) Transport the angle α between the vertical and the OC segment and draw lines with angle
α with respect to the horizontal that pass through the i1, i2 points. The resulting figure is a
parallelogram as in the relativistic case, and the solution is found where each of the lines
intersects the same parabola.

It is rather straightforward, although somewhat cumbersome, to demonstrate algebrai-
cally that the geometrical solutions described in this section are indeed correct. An appendix
is provided outlining the proofs.

Figure 4.Kinematic solution of a non-relativistic one-dimensional elastic collision. The
initial momentum and energy of the colliding bodies are represented by i1, i2 and the
final ones by f1, f2. The point C corresponds to p p m m,1

2 1 2
1
2 1 2+ +( )( ) ( ) . The two

parabolas, parameterised by the masses m1 and m2 correspond to the dispersion relation
of (1), where const=m has been chosen.
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Similar methods to those presented for elastic one-dimensional cases can be applied to
more general inelastic and/or two-dimensional problems. In two dimensions, hyperbolas and
parabolas are substituted by hyperboloids and paraboloids (see also [12]).

3. Einstein’s question and Archimedes’ law of the lever

One of the most paradigmatic discoveries of Archimedes is the law of the lever, which he
derived from geometrical reasoning [14]. It states that the quotient of the forces on both sides
of a lever is equal to the inverse quotient of the length of the arms, from the fulcrum to the
point where the force is applied.

F

F

l

l
. 4A

B

B

A
= ( )

An application of it is the Roman steelyard: knowing a given weight and the position of the
fulcrum at equilibrium, the value of a second weight can be deduced. In this section, this
principle is used within spacetime diagrams in order to address Einstein’s famous question
[15]: Does the inertia of a body depend upon its energy content? Or, stated differently, does
the mass of a body depend on its state of motion?

The starting point is a fully inelastic symmetric collision in the centre of mass frame, see
figure 5. The left–right symmetry of the problem automatically guarantees that the outgoing

Figure 5. Fully inelastic collision of two bodies of equal mass in the centre of mass
frame. The particles are initially placed at spacetime points A (t=x=0) and B (t=0,
x=L), with initial velocities v=cot α and −v. The values used in the plot are
v=0.5, L=1. Due to the symmetry of the setup, after the collision at C (t=L/(2v),
x=L/2), the outgoing trajectory is of constant x. Point D is depicted at an arbitrary
time after de collision D (t=L/(2v)+td, x=L/2) Projecting the trajectory, the point
F (t=0, x=L/2) is found, and it is identified with the fulcrum of a lever.
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body is at rest, and that the initial bodies had the same inertia, irrespective of whether it
depends on their velocity or not.

The solution of figure 5 applies to both the relativistic and non-relativistic cases. In order
to emphasise the analogy with a lever, one has been depicted at the bottom of the figure. The
fulcrum, coincident with the centre of mass at t=0, is in the middle point. This is a
visualisation of the equality of masses.

In order to address Einstein’s question, one can study the process of figure 5 from the
point of view of a different inertial frame. For convenience, the frame is chosen introducing a
boost of velocity −v, such that the body initially placed at B is at rest.

The non-relativistic Galilean transformation, that leaves time invariant, can be written as

t t x x vt, . 5¢ = ¢ = +( ) ( )

Using these expressions, it is straightforward to find the graph of figure 6 and to check that the
fulcrum F remains at the midpoint of the AB segment. This means that, in Galilean spacetime,
the answer to Einstein’s question is NO.

The situation taking into account the principles of special relativity is different. A Lorentz
transformation, which leaves the speed of light invariant rather than time, reads, for a boost of
velocity −v:

t t vx x x vt, , 6g g¢ = + ¢ = +( ) ( ) ( )

with v1 2 1
2g = - -( ) . The situation of figure 5 is transformed into the one of figure 7. The

coordinates of points A, B, C, D and F in the x′–t′ plane are computed from those of figure 5
using equation (6). They are

Figure 6. Non-relativistic Galilean boost of the situation of figure 5. The fulcrum
remains in the centre of the lever, implying that the mass does not change due to
motion of the body.
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Notice that the velocity of the boost −v is chosen taking into account the velocities v∣ ∣ of
the bodies in the centre of mass frame. The point F is still the midpoint of the AB segment.
However, in order to compare with the lever, it is necessary to consider points at equal time t′.
The line connecting F, C and D is parameterised by x′=L/(2γ)+vt′. The projection F′
(centre of mass at t′=0), is the t′=0 point of this line:

t x LF : 0, 2 . 8g¢ ¢ = ¢ =( ( )) ( )
Similarly, B′ is the t′=0 point of the line connecting B and C:

t x LB : 0, . 9g¢ ¢ = ¢ =( ) ( )

Clearly, F′ is displaced to the left with respect to the midpoint of the AB′ segment. The plot
shows, unequivocally, that in Minkowskian spacetime the answer to Einstein’s question is

Figure 7. Relativistic Lorentz boost of the situation depicted in figure 5. F remains the
midpoint between A and B but the projection F′ is closer to A than to B′. The fulcrum is
not at the centre, implying that the mass of a moving body is larger than the mass of the
same body at rest. This is pictorially represented by the disk putting an extra weight on
the left arm of the lever. The point x′=L has been displayed in order to emphasise that
the length AB′ is different from AB in figures 5 and 6. The numerical values used in the
figure for illustration are given in the caption of figure 5.
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YES. Moreover, it is clear that the inertial mass of a moving body is larger than the one of the
body at rest.

In order to check that the analogy also holds at the quantitative level, it is necessary to
compute the quotient of the lengths of the arms of the lever. From equations (7)–(9), it
follows that the length of the AF′ segment is γL(1−v2)/2 and that the length of F′B′ is γ

L(1+v2)/2.
Thus, using Archimedes’ law of the lever (4), and assuming that the gravitational force is

proportional to the mass, the quotient of masses is

m

m

v

v

1

1
, 10w

2

2
=

+
-

( )

where mw is the mass of the body initially placed at A, which has rest mass m and velocity
w cota= ¢. From the coordinates of C in the boosted frame, equation (7), it is immediate to
find out that w v v2 1 2= +( ). This expression, together with (10), leads to

m

m w

1

1
. 11w

2
=

-
( )

Thus, the well-known relativistic mass formula follows from Archimedes’ law of the lever
applied in a Minkowskian spacetime, which is built to accommodate Lorentz transformations.
In modern language, one may say that the Archimedes’ lever principle states that the fulcrum
is at the position of the centre of mass. In the absence of external forces, the centre of mass
undergoes uniform motion in a straight line, irrespectively of the inertial frame used for the
description. Consequently, it is immediate to deduce that F′ is the centre of mass of the system
at t′=0 and (11) follows from simple trigonometry.

4. Final remarks

The main motivation of the present work is the development of novel tools to visually explain
arid concepts of special relativity at different educational levels, including secondary school
and basic undergraduate courses. It follows the strategy of a number of previous works, e.g.
[6, 16], which explore the possibility of supplementing or substituting the usual algebraic
formulation of special relativity with graphical constructions.

The kinematics of elastic collisions is governed by linear momentum and energy con-
servation laws plus the dispersion relations. The system can be solved with geometrical
techniques relying on the properties of conic sections. For students, the transformation of
seemingly abstruse algebraic relations into simple graphical constructions provides an
alternative view and can be enlightening. The solution in terms of parallelograms, see
figures 1–4, is illustrative also of the behaviour of energy and momentum under Lorentz
transformations. In section 3, it was shown that geometrical reasoning for inelastic collisions
is also useful when conveying far from intuitive concepts such as the equivalence between
mass and energy (the remarkable history of this equivalence was described in [17]). In this
sense, the simple connection made in section 3 makes crystal clear that paradigmatic prop-
erties of special relativity such as spacetime transformations and velocity dependent masses
are intertwined. It is natural to conjecture that understanding this point can help students
finding these notions for the first time in developing a global intuition of the underlying
concepts. Furthermore, comparing the graphs for relativistic and non-relativistic cases allows
the reader to infer the similarities and differences between both scenarios.
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It should be mentioned that our goal here is not to describe all possible situations covered
by our kind of approach, but to emphasise that this general framework allows one to develop
new tools and possibilities. Classical geometry certainly underlies many aspects of modern
physics and this fact may well be further exploited with educational purposes.

Visual tools as those described here, and simple physical devices useful for their illus-
tration, have been used by one of the authors in secondary school courses [18]. The
experience seems to bear out the expectation of an improved understanding of the underlying
concepts by the students [19]. Certainly, this matter deserves further investigations from the
perspective of physics education research.

This contribution is also aimed at describing some analogies and establishing an open
dialogue between ancient Greek constructions, broadly represented by Archimedes, and
modern science, symbolised by Einstein. The goal would have been achieved if the reader
recognises common aesthetic patterns running from the classics to the contemporary
and back.
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Appendix. Algebraic proofs of the graphical solutions

In this appendix, details of the algebraic proofs of the geometric solutions of figures 2 and 4
are spelled out.

The initial data for the relativistic collision (figure 2) are pi1, Ei1, pi2, Ei2, which are
subject to the first expression of equation (1). The goal is to compute pf1, Ef1, pf2, Ef2 by
rewriting the geometrical procedure of section 2 in algebraic terms First of all, the bodies 1
and 2 preserve their mass in the collision and remain in the same hyperbola, resulting in

E p E p

E p E p . 12

i i f f

i i f f

1
2

1
2

1
2

1
2

2
2

2
2

2
2

2
2

- = -

- = - ( )

Second, we require that the OC, i1f2, f1i2 segments are parallel, namely:

E
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Taking into account that C is the middle point between i1 and i2, implying E E Ei iC
1

2 1 2= +( )
and p p pi iC

1

2 1 2= +( ), equation (13) can be rewritten as

E E p p E E p p
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The system (12), (14) has the following solution:
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It is immediate to check that these values provide a solution of the problem, since momentum
and energy are conserved:

p p p p E E E E, . 15i i f f i i f f1 2 1 2 1 2 1 2+ = + + = + ( )

Moreover, as the geometric solution suggests, the f2i2 segment is parallel to i1f1:
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A similar check can be performed for the non-relativistic solution of figure 4. The initial
and final points lie on their respective parabolas:
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On the other hand, the segments i1f1, f2i2 are parallel, with an slope inverse to that of the OC
line:

E E

p p

E E

p p

p p

m m
, 18

f i

f i

i f

i f

i i1 1

1 1

2 2

2 2

1 2

1 2

-

-
=

-

-
=

+
+

( )

From equations (17), (18), one can compute the final energy and momenta:
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2
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2
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=
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+
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+ - + -

= + + +

+ - - -

-

-

( )

( )

( ( ) ) [ (( ) )

( ) ( ) )]

( ( ) ) [ (( ) )

( ) ( ) )] ( )

The solution given in equation (19) satisfies conservation of momentum and energy, and
implies that the i1f2 and f1i2 segments are parallel.

Eur. J. Phys. 39 (2018) 045802 X Prado et al

11



ORCID iDs

Xabier Prado https://orcid.org/0000-0001-9535-7499
Iván Area https://orcid.org/0000-0003-0872-5017
Angel Paredes https://orcid.org/0000-0003-3207-1586
José Manuel Domínguez Castiñeiras https://orcid.org/0000-0002-5159-8968
José D Edelstein https://orcid.org/0000-0002-7485-9286
Jorge Mira https://orcid.org/0000-0002-6024-6294

References

[1] Minkowski H 1915 The relativity principle, lecture given at the Göttingen Mathematical Society
(November 5, 1907) Ann. Phys. 47 927–38

[2] Abbott B P et al (LIGO Scientific and Virgo Collaborations) 2016 Observation of gravitational
waves from a binary black hole merger Phys. Rev. Lett. 116 061102

[3] Minkowski H 1909 Space and time, lecture given at the 80th Meeting of Natural Scientists in
Cologne (September 21, 1908) Phys. Z. 10 104–11

[4] Born M 1920 Die Relativitätstheorie Einsteins und ihre Physikalischen Grundlagen Gemeinver-
ständlich Dargestellt (Berlin: Springer)

[5] Gruner P 1921 Eine elementare geometrische Darstellung der Transformationsformeln der
speziellen Relativitätstheorie Phys. Z. 22 384–5

[6] Takeuchi T 2010 An Illustrated Guide to Relativity (Cambridge: Cambridge University Press)
[7] Mermin N D 1997 An introduction to space–time diagrams Am. J. Phys. 65 476–86
[8] Mermin N D 1998 Space-time intervals as light rectangles Am. J. Phys. 66 1077–80
[9] Salgado R B 2016 Relativity on rotated graph paper Am. J. Phys. 84 344–59
[10] Saletan E J 1997 Minkowski diagrams in momentum space Am. J. Phys. 65 799–800
[11] Heath T L 1896 Apollonius of Perga. Treatise on Conic Section (Cambridge: Cambridge

University Press) pp xvii–lxvii and p 69
[12] Bokor N 2011 Analysing collisions using Minkowski diagrams in momentum space Eur. J. Phys.

32 773–82
[13] Ogura A 2017 Analyzing collisions in classical mechanics using mass-momentum diagrams Eur.

J. Phys. 38 055001
[14] Usher A P 1929 A History of Mechanical Inventions (New York: McGraw-Hill)
[15] Einstein A 1905 Ist die trägheit eines körpers von seinem energieinhalt abhängig? Ann. Phys. 323

639–41
[16] Prado X and Domínguez J M 2014 Audiovisual animations for teaching the theory of special

relativity based on the geometric formulation of Minkowski HSCI2014: Booklet of the 11th Int.
Conf. on Hands-on Science (Vila Verde: Hands-on Science Network) pp 259–66

[17] Fadner W L 1988 Did Einstein really discover ‘E=mc2’? Am. J. Phys. 56 114–22
[18] Prado X 2015 New light to relativity with levers and sticks Hands-on Science. Brightening our

Future ed M F Costa and B V Dorrío (Vila Verde: Hands-on Science Network) pp 49–60
[19] Prado X and Domínguez J M 2010 A didactic proposal for the visual teaching of the theory of

relativity in high school first course Contemporary Science Education Research: Teaching ed
M F Taşar and G Çakmakcı (Ankara: Pegem Akademi) pp 297–305

Eur. J. Phys. 39 (2018) 045802 X Prado et al

12

https://orcid.org/0000-0001-9535-7499
https://orcid.org/0000-0001-9535-7499
https://orcid.org/0000-0001-9535-7499
https://orcid.org/0000-0003-0872-5017
https://orcid.org/0000-0003-0872-5017
https://orcid.org/0000-0003-0872-5017
https://orcid.org/0000-0003-3207-1586
https://orcid.org/0000-0003-3207-1586
https://orcid.org/0000-0003-3207-1586
https://orcid.org/0000-0002-5159-8968
https://orcid.org/0000-0002-5159-8968
https://orcid.org/0000-0002-5159-8968
https://orcid.org/0000-0002-7485-9286
https://orcid.org/0000-0002-7485-9286
https://orcid.org/0000-0002-7485-9286
https://orcid.org/0000-0002-6024-6294
https://orcid.org/0000-0002-6024-6294
https://orcid.org/0000-0002-6024-6294
https://doi.org/10.1002/andp.19153521505
https://doi.org/10.1002/andp.19153521505
https://doi.org/10.1002/andp.19153521505
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1119/1.18574
https://doi.org/10.1119/1.18574
https://doi.org/10.1119/1.18574
https://doi.org/10.1119/1.19047
https://doi.org/10.1119/1.19047
https://doi.org/10.1119/1.19047
https://doi.org/10.1119/1.4943251
https://doi.org/10.1119/1.4943251
https://doi.org/10.1119/1.4943251
https://doi.org/10.1119/1.18651
https://doi.org/10.1119/1.18651
https://doi.org/10.1119/1.18651
https://doi.org/10.1088/0143-0807/32/3/013
https://doi.org/10.1088/0143-0807/32/3/013
https://doi.org/10.1088/0143-0807/32/3/013
https://doi.org/10.1088/1361-6404/aa750b
https://doi.org/10.1002/andp.19053231314
https://doi.org/10.1002/andp.19053231314
https://doi.org/10.1002/andp.19053231314
https://doi.org/10.1002/andp.19053231314
https://doi.org/10.1119/1.15713
https://doi.org/10.1119/1.15713
https://doi.org/10.1119/1.15713

	1. Introduction
	2. Geometrical methods for elastic collisions
	3. Einstein’s question and Archimedes’ law of the lever
	4. Final remarks
	Acknowledgments
	Appendix. Algebraic proofs of the graphical solutions
	References



