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Given the rapidly evolving landscape of linguistic prevalence, whereby a majority of the world’s existing
languages are dying out in favor of the adoption of a comparatively fewer set of languages, the factors behind
this phenomenon have been the subject of vigorous research. The majority of approaches investigate the temporal
evolution of two competing languages in the form of differential equations describing their behavior at a large
scale. In contrast, relatively few consider the spatial dimension of the problem. Furthermore while much attention
has focused on the phenomena of language shift—the adoption of majority languages in lieu of minority
ones—relatively less light has been shed on linguistic coexistence, where two or more languages persist in a
geographically contiguous region. Here, we study the geographical component of language spread on a discrete
medium to monitor the dispersal of language species at a microscopic level. Language dynamics is modeled
through a reaction-diffusion system that occurs on a heterogeneous network of contacts based on population
flows between urban centers. We show that our framework accurately reproduces empirical linguistic trends
driven by a combination of the Turing instability, a mechanism for spontaneous pattern-formation applicable
to many natural systems, the heterogeneous nature of the contact network, and the asymmetries in how
people perceive the status of a language. We demonstrate the robustness of our formulation on two datasets
corresponding to linguistic coexistence in the northwestern part of Spain and the southern part of Austria.
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I. INTRODUCTION

Language is the center of human activity and has served
as the fundamental mode of communication since the dawn
of human civilization. While there currently exists roughly
6000 languages differing structurally in terms of grammar and
vocabulary [1], they all evolve dynamically through human in-
teractions, that are shaped by economic, political, geographic
and cultural factors [2–8].

A rather unfortunate outcome of such evolution is the
replacement of vernacular tongues, spoken by a minority of
the population, with that spoken by the dominant majority.
Indeed, it is estimated that 90% of existing languages will
go extinct by the end of the century [1,9], leading to a huge
loss in cultural diversity, given the inextricable links between
speech and customs. One of the first mathematical models that
accurately reproduced such “language-death” was proposed
by Abrams and Strogatz (AS) [10]. In their formulation, two
languages compete, with the attractiveness of each of the
species being determined by its perceived status amongst the
population. As long as the symmetry between the perceived
status is broken, the model necessarily predicts a single hege-
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monic language adopted by the entire population. Indeed, the
model successfully accounts for the decline of 42 real-world
minority languages in contact with hegemonic counterparts.
The formulation however fails to account for those cases
where languages coexist in a geographically contiguous re-
gion.

To account for this limitation, refinements were made to the
AS model by Mira and Paredes [11,12] incorporating bilin-
gualism by introducing an interlinguistic similarity parameter.
An important example of this occurs in the northwestern part
of Spain in the autonomous community of Galicia, where both
Galician and Spanish are spoken. Their model analyzes the
temporal evolution of these languages demonstrating the exis-
tence of a stable coexistence given enough similarity between
the languages [13].

Both formulations and other related ones [14,15] focus on
the temporal aspect of language evolution at a macroscopic
scale, while ignoring local dynamics on the space where
subpopulations of competing tongues reside. To address this,
other approaches incorporate the geographic component into
reaction-diffusion equations [16–18] simulating the disper-
sal of speakers in a continuous domain [19–22]. While the
approach is reasonable, it fails when geographic regions rep-
resenting speakers of a common language are no longer
contiguous, and thus there is no meaningful diffusive front.
Furthermore, the approach is unable to provide spatially de-
tailed description of language spread and retreat.

An agent-based probabilistic model proposed in Ref. [23],
supported with detailed empirical data from southern Austria
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shed light on the constituents of language dynamics at a mi-
croscopic level. The region, where speakers of German and
Slovenian live, is partitioned into quadratic grids where each
cell represents an area of one square kilometer. To determine
the probability of speaking one of the languages in a given
year, the model uses the number of speakers of each language
in the preceding year for every cell and their interaction with
speakers with surrounding cells, hence accounting only for
short-range connections. Although this fine-grained model is
able to successfully determine the temporal evolution of the
two languages and generate satisfactory results for geographic
distribution of the subpopulations, it has limitations in terms
of generalization. The historic and elaborate dataset for the
number of speakers covering the entire region are from the
periods 1880–1910 and 1971–2001, and such detailed records
are not so easily available for other parts of the world.

A recent work [24] proposed a district level mean-field
network with uniform weights for Galicia where two com-
peting languages are spread across 20 districts of the region
with different prestige values, to combine internal complexity
of each location with influence produced by its neighbors.
This approach explains how the interplay between urban and
rural dynamics leads to competition in language shift. The
framework however requires fine-grained detail on a plethora
of parameters to study the sociolinguistic dynamics across the
region.

While the models described this far, reproduce, to varying
degrees of accuracy, the evolution of the observed linguistic
trends (to the extent that such data is available) they are
formulated in a fashion that makes it difficult to disentangle
the effects of the various mechanisms governing linguistic
evolution. Additionally while focusing either on short range
interactions or at a macroscopic scale, none of the models
consider the effect of human mobility, a rather important
ingredient in understanding the dynamics of socioeconomic
systems [25–27]. Here we propose a coarse-grained model of
language dynamics that seeks to uncover the minimal mecha-
nisms that reproduce the observed linguistic trends. We set up
our model in such a way that we can interrogate the effect of
each of the constituent mechanisms. It is important to note that
our goal is not to reproduce exactly the number of speakers of
a given language, but rather, sacrificing specificity and erring
on the side of generalizability, we focus on the qualitative
trends.

Our model consists of primarily three ingredients. We first
discretize the space on which linguistic interactions occur by
representing towns as nodes and connections between them
as edges, incorporating population flows at microscopic level.
This geographic network extends the work of [23] by com-
bining both short-range and long-range connections that are
not present in the agent-based model and are essential to de-
scribe global population interactions. The edges are weighted
by a gravitylike relation [27–30] which is the simplest pa-
rameter free model to calculate mobility flows between two
communities, while accounting for their geographic separa-
tion. Second, the evolution of each language is characterized
by reaction-diffusion equations for two competing languages
whose dynamics is described by the Lotka-Volterra model,
previously used to model linguistic coexistence [31,32]. As
opposed to wavefront propagation in continuous space which

FIG. 1. (a) 20 districts of Galicia, each represented by a a differ-
ent color. The points (nodes) correspond to the 550 cities and towns
in the region. (c) The corresponding map for Southern Carinthia
comprising of 9 districts and 112 cities. [(b) and (d)] Distribution
of edge weights si = ∑

j Wi j , for the geographic networks in Galicia
and Southern Carinthia with logarithmic binning. The tails of both
distributions has the form P(s) ∼ s−β . The exponents are extracted
using maximum likelihood estimation and are βG ≈ 1.72 in (b) and
βC ≈ 1.35 in (d).

requires a contiguous region, reaction diffusion on networks
prevents the isolation of language islands. The contact net-
work enables interactions along weighted edges such that each
node communicates with all of its neighbors. Spatial linguis-
tic patterns emerge on the geographical network through the
turing mechanism, an exemplar of pattern formation [33–35]
that relates to many observed natural phenomena in continu-
ous [36] and discrete media [37,38]. The final ingredient in
our model is the status perception of each language and its
corresponding degree of spatial correlation.

We test our model in two different regions of the world
with linguistic coexistence, Galicia, in northwestern Spain,
where Galician and Spanish are spoken, as well as Carinthia in
southern Austria, where one finds both Slovenian and German
speakers. In both cases, we find excellent agreement with
qualitative trends, demonstrating that in addition to the spe-
cific model of linguistic competition, based on the context,
one must also account for the geographic network on which
the dynamics take place, as well as asymmetries in linguistic
status perception.

II. DATA

In our analysis, we make use of datasets corresponding to
two independent parts of Europe where populations speak at
least two languages. The first comes from the Autonomous
Community of Galicia in northwestern Spain, where Galician
(a Romance language similar to Portuguese) and Castillian
(Spanish) are co-official. The dataset includes information
about the fraction of Galician and Spanish speakers in 20 dis-
tricts of the region consisting of 550 population entities [39].
In Fig. 1(a), we illustrate the different districts with distinct
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FIG. 2. Spatial distribution of linguistic prevalence for Galician
(a) and Spanish (b) speakers in the region of Galicia. Regions are col-
ored according to the fraction of speakers in that particular district.
The same map for German (c) and Slovenian (d) speakers in Southern
Carinthia. In both regions, languages are geographically distributed
in a complementary fashion; regions with the most abundant speakers
of a particular language correspond to the lowest amount of speakers
of the other language.

colors for each region. The cities are represented as black
points. The linguistic distributions according to the census
data are shown in Fig. 2(a) for Galician and Fig. 2(b) for
Spanish, where the colors represent the fraction of speakers of
a particular language in each district. The figure indicates that
the two languages are geographically distributed in a com-
plementary fashion; regions with the most abundant Galician
speakers correspond to the lowest amount of Spanish speakers
and vice versa.

Our second dataset corresponds to Slovenian and German
speakers in Southern Carinthia, Austria in the year 1910
across 9 districts and 112 towns or cities. The data available in
digitized form [40] consists of the fraction of the population
speaking either language at the level of cities. The region
with each district corresponding to a different color, with the
cities represented as points is shown in Fig. 1(c). In Fig. 2(b),
we plot the spatial distribution of prevalence for the year
1910, finding a similar trend to that seen for Galicia; regions
consisting of large number of Slovenian speakers (primarily
near the Austrian-Slovenian border) consist of few German
speakers, with the opposite also being true.

III. MODEL

A. Reaction-diffusion equations

Note, that while the results presented here are applicable
to the family of reaction-diffusion systems that admit Turing
instabilities, we model the language competition with the fol-
lowing set of Lotka-Voltera type differential equations, first
proposed in Refs. [31,32], due to its prior relevance in captur-
ing language evolution. The corresponding equations are,

du

dt
= cuv + αuu

(
1 − u

Su

)
,

dv

dt
= −cuv + αvv

(
1 − v

Sv

)
. (1)

Here u(�x, t ) and v(�x, t ) correspond to the frequency of the
population speaking each language, whereas the cross-term
uv represents the competition between them with a strength c,
interpreted as the status of the language; c > 0 indicates that
language u has a higher status or attractiveness than language
v, with the opposite being true for c < 0. Note that c while
traditionally interpreted as a status, may also incorporate other
exogenous variables influencing language preference, not im-
mediately apparent to the model, such as cultural similarities,
the extent to which one can move between regions (role of
transportation) among others. In the absence of competition,
the model reduces to logistic growth where Su and Sv repre-
sent the respective carrying capacities of the languages and
αu, αv their natality and mortality rates. For the purposes of
our analysis, these constants are redundant and without any
loss of generality set to 1 except for c, which is constrained
to |c| < 1. In this setting, the fixed points of Eq. (1) are
(u0, v0) = ( 1+c

1+c2 ,
1−c
1+c2 ).

In continuous media, the spatial component representing
the diffusion of species is introduced via a second-order diffu-
sion coefficient [20,32] proportional to ∇2u. It’s counterpart
in discrete media, such as networks, is the Laplacian matrix
Li j [37,41], defined as

Li j = Wi j − siδi j, (2)

where Wi j is a symmetric weighted adjacency matrix and
si = ∑

j Wi j is the weighted degree of node i [42]. To include
diffusion on the underlying network one would then add a
term of the form

∑N
j=1 Li ju j , and a corresponding one for v, in

a network of N nodes (i = 1, . . . , N). If one were to consider
ordinary diffusion then one need only include a diffusion
coefficient du, dv for each of the populations, which represents
the diffusing away from populations of higher density to lower
density regions. Yet, in the context of competition, one must
also consider effects where a minority population under threat
from a majority population diffuses away to a different region
to avoid extinction [43,44]. Such cross-diffusion can be intro-
duced by corresponding coefficients auv, avu � 0 proportional
to the product uv. With these refinements, Eq. (1) can be recast
thus

dui

dt
= cuivi + ui(1 − ui ) +

N∑
j=1

Li j[(du + auvv j )u j],

dvi

dt
= −cuiv j + vi(1 − v j ) +

N∑
j=1

Li j[(dv + avuu j )v j]. (3)

Note, that in districts where c > 0, the higher status tongue
corresponds to the population u, and v tends to move away at
a rate auv = γ whereas u remains in the district so avu = 0.
Similarly, in districts where c < 0, u diffuses away and we
have auv = 0 and avu = γ .

B. Choice of network and Turing instability

Next, we consider the choice of network that best rep-
resents the interactions between the populations in different
centers. Since we are interested in capturing the effects of
population movement, in principle, all cities are accessible
to each other through a transportation network, such that all
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nodes are connected to each other as in a complete graph.
Yet the extent of flows between two cities i, j depends on
their respective populations pi, p j and the distance di j . The
simplest choice for the coupling between cities is the gravity
model [27,28] with weights

Wi j = p j p j

d2
i j

. (4)

Here Wi j represents the ith row and jth column of the weight
matrix W ; pi and p j are the populations of the corresponding
cities and di j is the geographical distance separating them.
Thus greater flows occur either between high population cen-
ters or those proximate to each other. In principle the gravity
model can be generalized to more complex dependencies on
the population and distance [45] and one can consider related
models of mobility such as those based on intervening op-
portunities [29,46], however the version considered here has
been used to accurately described mobility patterns in differ-
ent contexts [47,48], and our results are not overly sensitive
to the precise form of Eq. (4) as long as the networks are
heavy-tailed [38]. In Figs. 1(b) and 1(d), we show the strength
distribution P(s) of the Galician and Southern Carinthian ge-
ographical networks indicating a right-skewed distribution in
both cases. A maximum likelihood fit to the tails of the distri-
bution yields P(s) ∼ s−β with βG ≈ 1.72 and βC ≈ 1.35. The
average weights are 〈s〉G = 6.33 and 〈s〉C = 1.54 whereas the
variance σs =

√
〈s2〉 − 〈s〉2 for each network are σ G

s = 29.38,
and σC

s = 5.47.
Equation (3) with the appropriate parameter values can

exhibit Turing structures, i.e., stationary nonhomogeneous so-
lutions [36], recently proposed as a mechanism to explain
spatial differentiation in linguistic competition [37,43]. A
small perturbation to the uniform state triggers the growth of
Turing patterns above a critical threshold, corresponding to
the ratio of the diffusion constants of the respective linguistic
species. The patterns in this context, correspond to distinct
populations of nodes differentiated by the relative number of
the population speaking a certain language. While in continu-
ous media, perturbations are decomposed into a set of spatial
Fourier modes representing plane waves with different wave
numbers, in networks the analog is the set of eigenvectors
φ(α) of the Laplacian matrix (with associated eigenvalue �α),
where α = 1, . . . , N corresponds to the mode [41]. The eigen-
values �α are sorted in decreasing order �1 > �2 . . . > �N

and the first eigenvalue is always zero (�1 = 0). Introducing
small perturbations (δui, δvi ), substituting into Eq. (3), and ex-
panding over the set of the Laplacian eigenvectors, the linear
growth rate λα for each node is calculated from a polynomial
equation of the form

λ2
α + b(�α )λα + c(�α ) = 0, (5)

where b(�α ), c(�α ) are functions of the (cross)-diffusion
coefficients, the competition terms uv, and the status c
[37,38,43]. The set of solutions to Eq. (5) for all modes α, cor-
respond to a dispersion relation λ(�α ). The Turing instability
occurs when at least one of the modes become unstable, indi-
cated by Re(λα ) > 0 which happens when c(�α ) < 0, and the
corresponding mode is denoted αc [37]. The full details of the

calculation are shown in Appendix A and can also be found in
Ref. [38].

After the onset of the Turing instability, the system reaches
a steady-state concentration of speakers for each node (city)
which is normalized according to ũ = 〈u〉

〈u〉+〈v〉 , and similarly
for v. Here the 〈. . .〉 denotes averaging over multiple real-
izations of the simulation corresponding to different initial
conditions. The concentration of speakers at the district level
is then a population weighted-sum over all constituent nodes.
The full details of the normalization and data aggregation
procedure is described in Appendix B. In what is to follow,
for the sake of simplicity, we assume that both competing
languages (cross)-diffuse at the same rate.

IV. RESULTS

A. Galicia

We begin our analysis with the case of Galicia. We seek
to uncover the role of each underlying mechanism in the
observed empirical trends, and therefore systematically probe
the effect of the model constituents, starting with the under-
lying network mediating the population-interactions. Recent
results suggest that Turing patterns in networks are influenced
and stabilized primarily by network topology provided the
distribution of links is heavy-tailed [38].

While the mobility networks we consider are spatial, we
first check the extent to which the linguistic patterns can be
explained solely by the heavy-tailed nature of the network. To
do so we randomly assign each node a weight s sampled from
the empirical distribution P(s) for Galicia [Fig. 1(b)], in effect
removing any information about the spatial location of the
nodes, and treating the network as a purely topological graph.
In addition, we set the value of the status c = 0.5 everywhere
in the region, the diffusion coefficients to du, dv = 0.01 and
γ = 2.1 for the cross-diffusion coefficients. These numbers
were chosen to drive the system to the onset of the Turing in-
stability. In Appendix C, we show the results of the simulation
averaged over 100 realizations of the process, compared to the
empirical data, as a scatter plot of the districts according to the
preponderance of Galician and Spanish, and in Figs. 3(a) and
3(d), we show the spatial linguistic distributions.

The scatter plots indicate relatively few nodes differentiate
from their initial fixed points for both Galician and Spanish.
The agreement with the empirical data is rather poor with a
Pearson correlation coefficient of ρG

p = 0.25 for Galician and
ρS

p = 0.26 for Spanish. One can also check the relative preva-
lence of linguistic speakers in each region by ranking districts
by the concentration of speakers for each language, and then
compute the rank correlation coefficient. In Appendix C, we
show the scatter plot of the simulated and empirical data in
terms of the rank of each district. The Spearman correlation
coefficient for both Galician and Spanish is ρG

s = ρS
s = 0.07.

The results indicate that network topology by itself is a poor
indicator of the observed linguistic prevalence.

Next, we restore the spatial nature of the network main-
taining both P(s) as well as the geographic position of the
nodes, i.e links between nodes are established according to
Eq. (4), and re-run the simulation with the same parameters.
We show the results in Figs. 3(b) and 3(e) where we plot
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FIG. 3. Testing the effect on linguistic prevalence in Galicia for each ingredient in our model. In (a) and (d), we test the effect of network
topology alone, by assigning equal status to every district (c = 0.5) and shuffling the weights of the link strengths according to Fig. 1(b), with
the effect of removing the spatial nature of the network. In (b) and (e), we restore the spatial nature of the network, while maintaining a fixed
status for every district. Finally, in (c) and (f), we use the spatial network in combination with the empirical geographic distribution of status
for each language. Pearson correlation coefficients in each panel indicate the comparison between the simulated and empirical concentration
of speakers.

the spatial distribution and in Appendix C, Figs. 7(b) and
7(e), which shows the scatter plot of concentrations. We find
improved correspondence for both Galician (ρG

p = 0.52) and
Spanish with (ρS

p = 0.51), although there is an overestimation
of Galician speakers, and a corresponding underestimation of
Spanish speakers in about half the districts. This can be ex-
plained by the choice of a positive value for c in every district,
which biases the result towards favoring Galician speakers.
A choice of negative c for each district would reverse the
trends. This is also reflected in Appendix C, Figs. 8(b) and
8(e), for the rank scatter plots, where we find ρG

s = ρS
s = 0.63.

Nevertheless, the reasonable agreement between simulation
and data for a majority of districts points to an important
role played by the geographic networks in linguistic evolu-
tion. By itself, however, it is not enough to explain the full
picture.

Next, we incorporate the geographical distribution of the
status parameter c into our framework. Surveys and polls
conducted in Galicia reveal 12 districts where Galician is
perceived to have higher status (c > 0), and 8 districts for
the case of Spanish (c < 0) [39]. For those districts where
residents report a higher status for Galician we set c = 0.5,
and for those that prefer Spanish we set c = −0.5. We then
rerun the simulation for the same set of (cross)-diffusion
coefficients as before, and report our results in Figs. 3(c)
and 3(f) and Appendix C, Figs. 7(c) and 7(f), for the spatial
distribution and scatter plots, respectively. We now find sig-
nificantly better agreement with the empirical data for both
types of languages, with ρG

p = ρS
p = 0.84. A similar effect is

seen in the relative abundance as reflected by the rank scatter
plots shown in Appendix C, Figs. 8(c) and 8(f), with ρG

s =
ρS

s = 0.85.

Finally, to close the loop, we consider the topological
network of Figs. 3(a) and 3(d) and assign the geographical
distribution of c, reporting our results in Appendix C, Fig. 9
Scatter plots and maps for real vs simulation concentrations
in Galicia with poisson edgeweights. The figure indicates that
the final concentrations are localized around the initial fixed
points of each language and there is no evidence of interme-
diate language concentrations resulting in ρG

p = 0.69 = ρS
p =

0.69. Taken together, the results indicate that the heavy-tailed
nature of the geographical mobility network coupled with the
spatial correlation of the status parameters (along with their
asymmetry) is a good predictor of the linguistic prevalence in
Galicia.

B. Southern Carinthia

To check whether our results are unique to Galicia, or
generalizable to other regions, we now repeat the analysis
for Southern Carinthia. We adjust the (cross)-diffusion con-
stants to generate an instability range coinciding with the
eigenvalue distribution of the empirical network Laplacian;
now du = dv = 0.1 and γ = 21. We once again, start by
randomly assigning weights to nodes sampled from the em-
pirical distribution P(s) seen in Fig. 1(d), assign the same
value of the status c = 0.5 in all districts and simulate the
linguistic evolution for the same set of (cross)-diffusion pa-
rameters used in Galicia. Much like in Galicia, we find the
same poor agreement with the empirical data in terms of both
the fraction of speakers (ρGer

p = 0.13, ρSlo
p = 0.13), Figs. 4(a)

and 4(d) and Appendix C, Figs. 10(a) and 10(d), as well as
their relative abundance (ρGer

s = 0.2, ρSlo
s = 0.2, Appendix C,

Figs. 11(a) and 11(d)), indicating that here too, the topological
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FIG. 4. Testing the effect on linguistic prevalence in Southern Carinthia for each ingredient in our model. In (a) and (d), we test the effect
of network topology alone, by assigning equal status to every district (c = 0.5), and shuffling the weights of the link strengths according to
Fig. 1(b), with the effect of removing the spatial nature of the network. In (b) and (e), we restore the spatial nature of the network, while
maintaining a fixed status for every district. Finally, in (c) and (f), we use the spatial network in combination with the empirical geographic
distribution of status for each language. Pearson correlation coefficients in each panel indicate the comparison between the simulated and
empirical concentration of speakers.

nature of the network by itself is a poor predictor of linguistic
prevalence.

Next, we consider the geographical network with weights
assigned according to the nodes’ positions [Eq. (4)]. The
results are shown in Figs. 4(b) and 4(e) and Appendix C,
Figs. 10(b) and 10(e). Unlike in Galicia, here we find poor
correspondence with the data. The Pearson correlation co-
efficients are now ρGer

p = ρSlo
p = −0.45 and the Spearman

correlation coefficients are ρGer
s = ρSlo

s = −0.35. The nega-
tive values for the correlation stem from only a few regions,
and it is more accurate to say that there appears to be no
correlation between the simulated and empirical data. While,
the contrast with Galicia is striking, this is to be expected;
as mentioned earlier, the patterns are stabilized by the heavy-
tailed nature of the network, a feature that is asymptotically
true in the large N limit. The network in Southern Carinthia
is an order of magnitude smaller in size than Galicia, and
in this relatively small setting, the geographical mobility
network has minimal-to-no-role in predicting the linguistic
patterns.

Additionally, we do not have access to how residents per-
ceive the status of each language given that there are no
(known) surveys or polls. A reasonable choice in determin-
ing the status, however is to infer it from the proportion
of speakers. That is, in those regions where German is the
majority tongue we assume German has the higher status,
and similarly regions with majority Slovenian speakers are
assigned a higher status for Slovenian. Correspondingly in
German majority districts we set c = 0.5 and c = −0.5 for
Slovenian majority regions. We rerun the simulation for the
same set of (cross)-diffusion coefficients as before, and report
our results in Figs. 4(c) and 4(f) and Appendix C, Figs. 10(c)
and 10(f) for the spatial distribution and scatter plots respec-
tively. We find that ρGer

p = ρSlo
p = 0.9. A similar trend is seen

for the relative abundance (Appendix C, Figs. 11(c) and 11(f)
with ρGer

s = ρSlo
s = 0.9. Thus, in this case, while the network

plays a limited role, accounting for the asymmetry and spatial
correlation of the status, the Turing mechanism produces good

agreement with the empirical linguistic distributions in in
Carinthia.

V. DISCUSSION

In this manuscript, we have presented a minimal formula-
tion to explain the observed linguistic trends in two regions
of Europe where languages co-exist. Our model, based on the
Turing mechanism has as its primary ingredients, a reaction-
diffusion model where language species spread and retreat
in the same fashion as it occurs in predator-prey dynamics,
the mobility network between locations based on the gravity
model, coupled with the asymmetries and the geographical
distribution in how speakers perceive a given language. Un-
like in other descriptions of linguistic evolution, the model
constituents are set up in a way, such that we can tease out
the effects of each component. Another advantage of our
framework as compared to existing formulations is the need
for minimal empirical input, as well as its generalizability to
multiple settings. Given that the language dynamics occurs
on a discrete network we are able to simultaneously capture
microscopic and macroscopic dynamics without the rise of
pathologies such as “language islands” due to the lack of
diffusive fronts in noncontiguous regions.

While patterns have been known to be stabilized by het-
erogenous network topologies in other settings, considering
just the network topology by itself without considering its
spatial nature, leads to poor agreement with our results and
empirical trends. Once one accounts for the spatial location of
nodes, the model gets about half the districts right in Galicia.
Note that this occurs despite assigning both languages, Gali-
cian and Spanish, equal status among residents. In our version,
we assigned higher status to Galician and despite this, the
model was able to accurately reproduce some of the districts
where Spanish is the majority language. This points towards
strong evidence for the spatial mobility network of contacts
playing an important role in language interaction and diffu-
sion. Similar results were seen for the relative abundance of
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languages, that is, ranking districts based on the concentration
of speakers of each language.

The same was not seen for Southern Carinthia, which due
to being much smaller in size, the spatial network had little-to-
no predictive power in terms of the concentration of German
and Slovenian speakers. Nevertheless, when coupled with a
bimodal distribution for the status parameter (reflecting asym-
metries in how languages are perceived), very good agreement
was observed, both in terms of the concentration of speakers
and the relative abundance of the languages. While the two
regions differ in terms of the importance of the relevant ingre-
dients of the model, the linguistic trends are captured by the
same framework.

This agreement is notable, given our minimal set of as-
sumptions as well as little recourse to empirical parameters.
Of course, to go beyond this one would need tailored models
with more granular data and the introduction of more region-
specific parameters. More granularity can be introduced to
the formulation through a metapopulation framework where
intra-region interactions in addition to inter-region interac-
tions may also be considered. Such an approach was used to
study species dispersal in food-webs using a master-stability
function approach [49]. More complex facets of linguistic
prevalence such as bilingualism, can be introduced through
an additional term in Eq. (3). We also note that our analysis
is limited to pairs of languages that share a certain degree
of interlinguistic similarity. Indeed, it has been shown in
Ref. [50] that languages co-exist in a range of inter-linguistic
similarity and status values, once the similarity is over a
critical value and where there is not too much asymmetry
in how languages are perceived by the population. Situations
such as the co-existence of wildly disparate languages such
as Indo-European and Niger-Congo or more specifically, the
case of Spanish and Basque (the latter is not an Indo-European
language) are therefore unlikely to be captured by our model.
Nevertheless, we anticipate our formulation may prove useful
in understanding coexistence of related languages in regions
with scarce data on the relevant parameters. Finally, we note
that the formulation presented here is not limited to just to
the co-existence of languages, but also may apply to any
sociological phenomena, where groups with different traits
compete on a spatial background.

All data and code required to generate the results presented
in this manuscript are accessible in Ref. [51].
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APPENDIX A: TURING INSTABILITY

Expanding the functions f (ui, vi ) = cuivi + ui(1 − ui ) and
g(ui, vi ) = −cuivi + vi(1 − vi ) to first-order around the fixed
points u0, v0 via perturbations δui, δvi, Eq. (3) can be written
in linearized form as( dui

dt
dvi
dt

)
=

(
fu fv
gu gv

)(
ui − u0

vi − v0

)

+
N∑

j=1

Li j

(
du + auvv0 auvu0

avuv0 dv + avuu0

)(
u j

v j

)
,

(A1)

with the Jacobian and diffusion matrix are respectively de-
fined as

J = J|u0,v0 =
(

fu fv
gu gv

)
and

D = D|u0,v0 =
(

du + auvv0 auvu0

avuv0 dv + avuu0

)

=
(

Duu Duv

Dvu Dvv

)
. (A2)

The eigenvalue equation for the Laplacian matrix is∑N
j=1 Li jφ

(α)
j = �αφ

(α)
i , α = 1, . . . , N . In terms of small per-

turbations, Eq. (A1) becomes

dδui

dt
= fuδui + fvδvi +

N∑
j=1

Li jDδu j,

dδvi

dt
= guδui + gvδvi +

N∑
j=1

Li jDδv j . (A3)

The perturbations can be expanded over the set of
Laplacian eigenvectors as δui(t ) = ∑N

α=1 B(α)
u exp[λαt]φ(α)

i

and δvi(t ) = ∑N
α=1 B(α)

v exp[λαt]φ(α)
i . Substituting these into

Eq. (A3), we obtain the following eigenvalue equation:

λα

(
B(α)

u

B(α)
v

)
=

(
fu + Duu�α fv + Duv�α

gu + Dvu�α gv + Dvv�α

)(
B(α)

u

B(α)
v

)
. (A4)

The characteristic equation of this system is given by

λ2
α + b(�α )λα + c(�α ) = 0, (A5)

where

b(�α ) = −[Tr(J) + Tr(D)�α],

c(�α ) = Det(D)�2
α + [Duugv + fuDvv

− fvDvu − Duvgu]�α + Det(J). (A6)

The solutions to Eq. (A5) are then λα1 =
−b(�α )+

√
b(�α )2−4c(�α )
2 and λα2 = −b(�α )−

√
b(�α )2−4c(�α )
2 .
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FIG. 5. Eigenvalue distributions of empirical networks of (a) Galicia and (b) Carinthia along the dispersion curve Re(λ(�α )). The
instability ranges are marked by [�G

α1
, �G

α2
] and [�C

α1
, �C

α2
] for Galicia and Carinthia, respectively. Differentiation of nodes are triggered

by the instable growth factors Re(λ(�α )) > 0 which correspond to eigenvalues overlapping the instability ranges.

When diffusion starts, the only solution with positive real
part is λα1 . Thus we define the dispersion relation in terms of
Laplacian eigenvalues as Re(λ(�α )) with roots �α1 and �α2 ,
defining the instability range.

The Turing instability is triggered when the eigenvalues
�(α) become unstable, which indicates that the correspond-
ing growth factors in the dispersion relation Re(λ(�α ))
become positive. In Fig. 5 Eigenvalue distributions of empir-
ical networks in instability range, we show the eigenvalues
distribution for the geographic networks of Galicia [panel
(a)] and Carinthia [panel (b)] along the curve Re(λ(�α )).

The unstable modes are the eigenvalues that lie in the range
[�G

α1
,�G

α2
] and [�C

α1
,�C

α2
], respectively.

APPENDIX B: DATA NORMALIZATION
AND AGGREGATION

Figure 6 Data Normalization shows the results of a typ-
ical simulation for the region of Galicia using the set of
parameters used to generate Fig. 3 in the main manuscript.
Galician and Spanish speakers start with the initial fixed
points u0 = 1.2 and v0 = 0.4 in districts where c = 0.5 and

FIG. 6. Averaged simulation results after multiple realization with different random initial perturbations. (a) and (c) are the concentration
of speakers of Galician and Spanish respectively for each node. (b) and (d) are the normalized fractions of speakers.
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u0 = 0.4 and v0 = 1.2 in districts where c = −0.5. The con-
centration of speakers in the new stationary state is shown
in Figs. 6(a) and 6(c). The results are averaged over multiple
realizations with different initial random perturbations to the
fixed points. The points correspond to the average over mul-
tiple realizations and fluctuations are shown as error bars. In
Figs. 6(b) and 6(d), we show the normalized concentrations,
where nodes are rescaled with the total average concentra-
tion per node, ũ0 = 〈ui〉

〈ui〉+〈vi〉 and ṽ0 = 〈vi〉
〈ui〉+〈vi〉 . The normalized

values of the initial fixed points correspond to ũ0 = 0.75;
ṽ0 = 0.25.

The results are then aggregated to the level of districts by
calculating the weighted average of node concentration by the
population pi of the node that they belong to. In other words,
Galician and Spanish speakers of district j is calculated by

〈u j〉 =
∑

i∈ j ũi pi∑
i∈ j pi

and 〈v j〉 =
∑

i∈ j ṽi pi∑
i∈ j pi

. The same procedure is

used in Carinthia.

APPENDIX C: SUPPORTING FIGURES

We plot the proportion of speakers of each language
generated by our model against the empirically measured pro-
portion of speakers in Galicia (Fig. 7). A rank-ordered version
of the plot is shown in Fig. 8. In Fig. 9, we plot the analog
of Fig. 7 for the simulation corresponding to keeping the
geographical distribution of c on the topological network. We
plot the proportion of speakers generated by the simulation
against the empirical value in Carinthia in Fig. 10 and its
rank-ordered version in Fig. 11.

FIG. 7. Comparison of simulation results with empirical concentrations in Galicia, illustrated in the same order as in Figs. 3(a)–3(c) for
Galician and 3(d)–3(f) for Spanish speakers. The Pearson correlation coefficient (ρp) is reported in each panel.
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FIG. 8. Comparison of simulation results with empirical rank-ordering of districts in terms of concentrations, in the same order as in
Figs. 3(a)– 3(c) for Galician and 3(d)–3(f) for Spanish speakers. The Spearman correlation coefficient (ρs) is reported in each panel.

FIG. 9. Comparison of simulation results with empirical concentrations in Galicia, for the case where geographical distribution of c is
assigned to the nonspatial topological network. The scatter plots in (a), (b) and the maps in (c), (d) for Galician and Spanish speakers show
that the final concentrations are localized around the initial fixed points of each language and there is evidence of intermediate language
concentrations.
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FIG. 10. Comparison of simulation results with empirical concentrations in Carinthia, in the same order as in Figs. 4(a)–4(c) for German
and 4(d)–4(f) for Slovenian speakers. The Pearson correlation coefficient (ρp) is reported in each panel.

FIG. 11. Comparison of simulation results with empirical rank-ordering of districts in terms of concentrations, in the same order as in
Figs. 4(a)–4(c) for German and 4(d)–4(f) for Slovenian speakers. The Spearman correlation coefficient (ρs) is reported in each panel.
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