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Abstract—This document aims to establish an alternative
physical formulation for the harmonic power flow in electrical
systems provided by Geometric Algebra (GA) and the Poynting
Vector (PV) and Poynting Theorem (PT). Given the traditional
definition of PV (Abraham approach) as the vector product of
the electric field and magnetic field, we exploit the property of the
vector product as a dual form of the much more powerful wedge
product operator from exterior algebra. Using concepts of vector
spaces, we develop a completely GA-based approach founded on
top of the isomorphism among periodic time-domain signals and
Euclidean spaces. Our investigations shed more light on the long-
running discussion of electric power flow in non-sinusoidal and
non-linear electrical power systems.

Index Terms—geometric algebra, geometric power, harmonic
power, Poynting vector

I. INTRODUCTION

The Poynting Theorem (PT) establishes the conservation
of energy for the electromagnetic field and is derived from
Maxwell’s equations and Lorentz law. For a linear media and
ohmic conductor, the integral form is usually written as

−
‹

∂V

~S · d~a =

ˆ
V

~J · ~EdV +
∂

∂t

ˆ
V

udV (1)

where V is a generic volume, ∂V is the boundary surface
of that volume with unitary normal surface d~a, u is electro-
magnetic energy density, ~E is the electric field vector, ~J is
the current density vector and ~S = ~E × ~H is the PV. It is
named after J.H. Poynting who first presented it in the late
nineteenth century. Its physical interpretation has always been
linked to the electromagnetic field local energy density flow. Its
relevance is unquestionable when it comes to electromagnetic
radiation. However, it has had limited use in power electrical
circuits, where there is a predominant current conduction
process (although the magnetic induction effect in transformers
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is completely driven by electromagnetic waves). Despite the
efforts made by renowned researchers such as Emanuel [1]
or DeLeon [2] to reconcile the flow of active and non-active
power with PT’s postulates, its use has not been widespread
in the power engineering community. Interestingly enough, so
far a single researcher [3] has criticized its validity, to the best
knowledge of the authors. However, solid and well-founded
proofs have been presented to refute these claims [4].

Furthermore, GA has been successfully applied during the
last years to many scientific and engineering fields such as
physics, robotics, computer vision, etc., being power systems
one of them. GA framework has been used to define the
Geometric Power (GP) [5]–[7] because it is extremely useful
at capturing the inherent multidimensionality of time and
frequency multi-phase circuits. Hitherto, its application has
been certainly limited to the frequency domain and single-
phase systems in the presence of harmonics through a Cl 2k,0,0
Clifford algebra where k is the number of harmonics in the
voltage/current waveform (if dc is present, then 2k+1 dimen-
sions will be needed). In the formalism of GA, Cl p,q,r means
that the basis contains p vectors squaring to +1, q vectors
squaring to 0 and r vectors squaring to −1. For example,
Space-Time Algebra (STA) makes use of a Minkowski space
with Cl 3,0,1. Recently, the GA approach has been extended to
multi-phase circuits in time [8] and frequency domain [9].

Therefore, we are interested in devising a foundational
connection between the PT (formulated in GA terminology)
and the above-mentioned Geometric Power that contribute
to a better understanding of harmonic power flow under
nonsinusoidal conditions and non-linear loads. In this paper,
we present a GA-based version of the PT, from which we
derive the proposed GP in [7]. This proposal is unique and
cannot be addressed through the algebra of complex numbers
in the presence of multiple harmonics. We highlight that the
term harmonic power flow not only refers to the traditional
accepted concept associated to a ficticious power obtained
by considering armonics of voltage and current of the same
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frequency, but we also extend the formulation to a new
ficticious power flow originated by the interaction of mixed
frequency voltage and current components.

II. GEOMETRIC ALGEBRA APPLIED TO POWER SYSTEMS

Starting from the pioneering work of Menti [10], a refined
mathematical framework was developed in [7] and [8] that
can be applied to power systems under any supply or load
condition. One of its most valuable merits is that both, time
and frequency domain approaches, can be formulated. In this
sense, GA reveals its prominent significance as a unified
framework to describe physical processes. GA is pure math,
so this framework should not be understood as a ”yet another
new power theory”, but rather as a new, advanced, and unified
way to look into the physics of the problem.

The way that GA applies to power systems in the frequency
domain relies on the use of an orthonormal base

σ = {σ0,σ1,σ2, . . . ,σ2n} (2)

defined for a vector space in R2n+1 that is isomorphic to the
well-known Fourier basis for time domain periodic functions
{1,
√

2 cosωt,
√

2 sinωt, . . . ,
√

2 cosnωt,
√

2 sinnωt}, where
ω is a constant and n is the highest harmonic order. Any vector
v can be represented as a linear combination of unitary basis
vectors σk:

v =

2n∑
k=0

vkσk = v0σ0 + v1σ1 + . . .+ v2nσ2n (3)

Note that the term v0 accounts for the dc term. From now on,
this term will be deliberately ignored. Under this assumption,
it is possible to establish a new algebra Gn with a bilinear
form: the geometric product. For two vectors u and v, it can
be defined as:

M = uv = u · v + u ∧ v (4)

which can be seen as the sum of the traditional scalar or inner
product plus the so-called wedge or Grassmann product. The
latter fulfills the anti-commutativity property:

u ∧ v = −v ∧ u (5)

The above entity is commonly known as bivector and is a new
object not found previously in linear algebra. For example, a
two dimensional vector u = u1σ1 + u2σ2 and v = v1σ1 +
v2σ2, can be multiplied using the geometric product

M = uv = (u1σ1 + u2σ2)(v1σ1 + v2σ2)

= (u1v1 + u2v2)︸ ︷︷ ︸
〈M〉0

+ (u1v2 − u2v1)︸ ︷︷ ︸
〈M〉2

σ12 (6)

where M consists of two elements, the term 〈M〉0 which
is a scalar and the term 〈M〉2 which is a bivector. As these
elements are of a different nature, M is commonly referred to
as multivector. The operator 〈·〉k refers to k-grade component

of a multivector. The norm of a multivector is:

‖M‖ =
√
〈M †M〉0 (7)

where M † is the reverse of M (see [11] for details). Note the
details of the chosen notation. In the GA domain, capital bold
letters are used for bivectors (in general, for multivectors) and
small bold letters for vectors (instead of the more traditional
arrow or bar symbol).

A. Frequency Domain Geometric Power Definition

In this work, the frequency approach is chosen to explain
the power flow. The main reason is the great interest in the
power community to compute harmonic power flow com-
pletely in this domain. The rationale for a GA approach is
that the transformation of periodic signals from the time to
the geometric domain can reveal new insights for the harmonic
power flow not previously disclosed in the phasor or complex
domain. For this purpose, the isomorphic property among
vector spaces is exploited as detailed in [7], and reproduced
here for convenience:

1 ←→ σ0√
2 cosωt ←→ σ1√
2 sinωt ←→ σ2

...√
2 cosnωt←→ σ2n−1√
2 sinnωt←→ σ2n

(8)

Based on (8), a general voltage (or current) waveform is then
transformed as

u = U0σ0 +

n∑
k=1

Ukcσ2k−1 + Uksσ2k (9)

where Ukc = Uk cosϕk and Uks = Uk sinϕk. The same
transformation can be applied to i(t) in order to calculate
the geometric current i. It is worth noting that i may include
harmonics not present in the voltage. See [7] for further details
about norms and current decomposition. For the simple case
of a sinusoidal linear single-phase circuit, a generic voltage
is v(t) =

√
2 (vc cosωt+ vs sinωt), while the current is

i(t) =
√

2 (ic cosωt+ is sinωt). In this case, the geometric
voltage is v = vcσ1 + vsσ2 and the geometric current
i = icσ1 + isσ2. The geometric power can be computed as
showed in (6),

M = vi = (vcic + vsis)︸ ︷︷ ︸
Mp=P

+ (vcis − icvs)︸ ︷︷ ︸
Mq=Q

σ12
(10)

As expected, M is composed of a scalar (the active power
P ) and a bivector (the reactive power Q) term. Note that
they are obtained from interactions of the same frequency
components. Let’s now assume a non-linear load that generates
a harmonic current like ih(t) =

√
2 (ic cos 2ωt+ is sin 2ωt),

so the geometric current is ih = icσ3 + isσ4. The geometric
power is now

Authorized licensed use limited to: UNIVERSIDADE DE SANTIAGO. Downloaded on July 12,2022 at 13:22:29 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1. Cross (green vector) and wedge (red plane) product of two vectors
a and b.

Mh = vcicσ13 + vcisσ14 + vsicσ23 + vsisσ24 (11)

The terms in Mh are all bivectors. They are the result of the
interaction of components of different frequencies. Note also,
that whenever the bivector part is present, the efficiency of the
delivery system is not optimized, so a current decomposition
procedure could be carried out to cancel that part of the current
that accounts for the non-active part of the geometric power.
This non-active power is always related to the wedge product
of voltage and current v∧i. It follows that the geometric power
M can capture the non-active cross-product power terms. This
is not the case for the traditional complex apparent power.

III. ELECTROMAGNETIC FIELDS FORMULATION USING
GEOMETRIC ALGEBRA

Geometric Algebra applied to electromagnetism was devel-
oped by D. Hestenes [11] in the 1970s. The underlying idea is
that, unlike the electric field ~E, the magnetic field ~H (or ~B) is
not a polar but an axial vector resulting from the vector product
of two polar vectors. A typical case where an axial vector is
obtained is the computation of the magnetic field caused by
a wire carrying a current. According to the classical approach
(Biot-Savart’s law), the result for a 3D case is

d ~B =
µI

4π

d~l × ~r
r3

(12)

where I is the electric current, d~l is an infinitesimal part of
the wire and ~r is the vector position.

As depicted in figure 1, the cross product a × b is just
the vector normal to the plane defined by the bivector a ∧ b.
It is worth mentioning that this property is only satisfied in
3D. Axial vectors are a dual (but limited) representation of
a more general concept: bivectors (see reference [12] for a
comprehensive list of the benefits of using bivectors instead
of axial vectors). Therefore, it is claimed that the magnetic
field is a bivector quantity in its essence. Thus, the bivector
representation for the magnetic induction is as follows

dB =
µI

4π

dl ∧ r
r3

(13)

Figure 2. Projection (dot product) of a vector v onto a bivector B. The result
is the opposite to the cross product of the vector ~v = v and vector ~B (dual
of the bivector B).

Note again the use of bold and lower case for vectors and
upper case for bivectors or multivectors in general. The GA
approach for electromagnetic fields leads to a new represen-
tation of the Lorentz force

f = qe+ qB · v (14)

where e is the electric field vector, v is the velocity vector of
a charged particle and B is the magnetic induction bivector.
Note that the property ~v× ~B = −v ·B = B ·v has been used
in (14). For clarity, figure 2 shows a geometric representation
for this property.

Once we have highlighted the different nature of the electric
and magnetic induction fields in the GA domain, it is interest-
ing to point out the new form for the Poynting Vector. Note that
from now on, the Abraham approach [13] will be followed,
i.e., the magnetic bivector field H will be used instead of the
induction bivector B to compute the PV

s = H · e (15)

The above expression is generally valid for any dimension
and matches the classical one, i.e., s = ~E × ~H in three
dimensions.

IV. POYNTING VECTOR AND GEOMETRIC POWER

In the previous section, the GA approach for PV from a
pure electromagnetism point of view has been introduced.
However, the goal of the presented investigations is to shed
light on the relationship between PV and the geometric power
M proposed in [7]. Is there any way to derive M from PV?
For this task, the vector field generated by the PV needs to be
analyzed.

From a practical perspective, we are interested in trans-
mission systems delivering energy/power from a source to
a load in the real world, i.e., in a 3D space. However, a
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Figure 3. Electric vector e, magnetic bivector H and Poynting vector s caused by two long and thin conductors carrying a current I in a 2D world.

new theoretical 2D physical space will be presented here
for convenience and simplicity. Note that nothing prevents
Maxwell’s equations (from which circuit theory is derived)
to be applied in two-dimensional flat worlds. It is outside of
the current work a full justification of the above assertion,
but the reader is encouraged to read references [14], [15].
Inmediately, it is obvious that a mathematical inconvenient
arises if we use equation (12) to compute the magnetic field
in a 2D world. The use of the vector product is not even
defined in such a space. This is a major and serious drawback
of vector calculus. In contrast, the use of the wedge product
does not pose any problem since the result is a bivector within
the original space. Moreover, the generalization to the real 3D
space is also straightforward [12], [16].

To emphasize the benefits of GA and without loss of gener-
ality, a planar (flat) circuit with two long and thin conductors
(L and N ) separated by a distance h and connecting a power
source and a load is presented in figure 3. A new vector basis
σ′ = {σx,σy}, different from basis σ in (2), is used to
describe the Euclidean geometry in this planar 2D space. There
are two regions of interest: the one between the conductors
(internal) and the remainder (external). According to [14], the
field calculations can be performed exclusively in 2D using
GA. In the internal region, the resulting electric and magnetic
fields are constant, leading also to a constant PV. In contrast, in
the external region, all the fields are zero, so we can conclude
that the power flow is confined through the internal region.

The field values for the internal region are

e = −V
h
σy

H+
N = H−L =

I

2
σyx

H−N = H+
L =

I

2
σxy

H = H+
N +H−L = Iσyx

(16)

where H+
L and H+

N are the magnetic field in the upper part
of the wire L and N , respectively. Similarly, H−L and H−N
are the magnetic field at the bottom part of the wires. In this
way, the PV is computed according to (15) as

s = H · e =
1

2
(He− eH) =

V I

h
σx (17)

Notice that the resultant PV is a vector parallel to the
wires. The above implies that the vector s cannot contain
components in the y axis. This result is already familiar and
is in good agreement with the three-dimensional case for
rectilinear conductors [1], [4], [17]. For an arbitrary voltage
v(t) and current i(t) the result is similar but the PV can
oscillate between positive and negative values in σx direction.
In (17), there is clear evidence of the interaction among the
electric and magnetic fields which plays an important role in
the power derivation formulae. The application of (1) to a
general voltage and current for the 2D case is straightforward

p(t) =

‹
∂V

s · da = s · hσx = s(t)h = v(t)i(t) (18)
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Notice that the use of GA for a 2D world gives the
expected results for the instantaneous power using the PV in a
completely general way under the quasi-static field condition
[18]. Particularly, periodic signals are of great interest from
an engineering point of view. The vector field e and bivector
field H can be obtained as an infinite sum of time-harmonic
components at any point in space

e(t) = e(t)σy =
∑
m∈M

em(t) =
∑
m∈M

em(t)σy

H(t) = H(t)σxy =
∑
l∈L

Hl(t) =
∑
l∈L

Hl(t)σxy

(19)

where M and L are the set of harmonics in electric and
magnetic field, respectively. Note that, in general, the set M 6=
L. Therefore, substituting (19) into (17) and considering (18),
the resulting PV is

s(t) = e(t)H(t)σx =

(∑
m∈M

em(t)

)(∑
l∈L

Hl(t)

)
σx

(20)

and the instantaneous power is

p(t) = s(t)h =

∑
m∈M
l∈L

em(t)Hl(t)

h (21)

It can be observed that (21) leads to a result with a
main implication: there are cross-frequency terms due to the
interaction of harmonics of different frequencies between the
electric and magnetic fields. This is an important aspect that
can be completely captured by GA. It must be emphasized
that this is not possible with complex algebra because of
its inherent limitation in dimensions. The rationale for this
reasoning is presented in [7].

The basis in (2) can be used to account for the multidimen-
sionality of the harmonic components in a given signal x(t)
(we intentionally exclude the dc component for simplicity).
Let us suppose a n-dimensional harmonic signal x(t)

x(t) =

n∑
k=1

xk(t) =

n∑
k=1

√
2Xk cos (kωt+ ϕk) (22)

By using the isomorphic property of vector spaces [7], it
can be transferred from the time to the geometric domain by
means of the basis σ defined in (2)

x =

n∑
k=1

Xk cosϕkσ2k−1 −Xk sinϕkσ2k

= X̄1σ1 + . . .+ X̄2nσ2n

(23)

where X̄2k−1 = Xk cosϕk and X̄2k = −Xk sinϕk. The
difference between the basis σ′, which represents the mul-
tidimensionality of the geometric space in which we live,
and σ, which represents the multidimensionality of the vector

space of harmonic functions, is expressly emphasized. For a
two time signals x(t) and y(t), x and y are the transformed
vectors in GA, respectively. For simplicity, we’ll assume that
both signals have the same harmonic content. Using (6), the
geometric product is

xy =
(
X̄1σ1 + . . .+ X̄2nσ2n

) (
Ȳ1σ1 + . . .+ Ȳ2nσ2n

)
=

2n∑
k=1

X̄kȲk +

2n∑
l,k
l<k

(
X̄lȲk − X̄kȲl

)
σlk

(24)

Note that there is a scalar part that accounts for the dot
product and a bivector part that accounts for the wedge
product. Now, we are in a position where the coordinate of PV
in (17) can be transferred to the harmonic GA representation.
The coordinates of the electric and magnetic field in (19) now
becomes

ee =

2n∑
k=1

ekσk = e1σ1 + . . .+ e2nσ2n

hH =

2n∑
k=1

Hkσk = H1σ1 + . . .+H2nσ2n

(25)

where ee is the coordinate for the spatial electric vector e and
hH is the only spatial coordinate of the magnetic bivector H .
Note that both ee and hH are vectors. Following (24), the
result is

eehH =

2n∑
k=1

ekHk +

2n∑
k,l
k<l

(ekHl − elHk)σkl (26)

Recalling expression (18) and choosing the same boundary
as in figure 3, the result for the right side of (18) is a scaled
version of (26). Thus, the left hand of (18) can be also
transferred to GA by virtue of the isomorphic property. We
call it multiphase geometric power

M = ui (27)

For the specific case of single-phase systems with multiple
harmonics (for simplicty, we consider the same for voltage and
current), the voltage vector is u = u1σ1 + . . .+ u2nσ2n and
the voltage current is i = i1σ1 + . . .+ i2nσ2n. The geometric
power is

M = ui =

2n∑
k=1

ukik +

2n∑
k,l
k<l

(ukil − ulik)σkl (28)

We can now compare term by term equations (26) and (28)
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P =

2n∑
k=1

ukik = d

2n∑
k=1

ekHk

Mn =

2n∑
k,l
k<l

(ukil − ulik)σkl = h

2n∑
k,l
k<l

(ekHl − elHk)σkl

(29)
where P is the active power, the result of the product among
similar components and same frequency of the voltage and
current. Mn is the non-active geometric power and is the
result of the sum of two types of products: cross-frequency
and in-quadrature terms among voltage and current (terms like
σ(2k−1)(2k)). The coordinates of the latter are the well-known
reactive power in the Budeanu sense. The scaling factor h
accounts for the geometry of the enclosing surface (line) of
the circuit.

It can be seen that the geometric power has a well-defined
physical significance by means of the isomorphism among
vector spaces. It is founded on PT and PV, which leads to
the traditional concepts of active power, reactive power, and
non-active power in the frequency domain.

V. CONCLUSIONS

An alternative physical formulation for the harmonic power
flow in electrical systems provided by Geometric Algebra and
the Poynting Vector has been presented in this paper. By
using a new approach based on a simple world of reduced
dimensionality (two dimensions), the PV has been formulated
considering the magnetic field as a bivector rather than an
axial vector. The scalar product of the bivector magnetic field
and the vector electric field yields the GA counterpart for
the PV. For the quasi-static condition in electrical circuits, it
is obtained the traditional result of a vector parallel to the
wires entering the circuit. Finally, the comparison term by
term among PV and geometric power, confirms the physical
foundation of the latter. For the active power, it is the result of
the product of frequency-like terms among voltage and current,
while for the reactive and non-active power it is the result of
cross-frequency and in-quadrature terms among voltage and
current.
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J. Roldán Pérez, Geometric algebra framework applied to symmetrical
balanced three-phase systems for sinusoidal and non-sinusoidal voltage
supply, Mathematics 9 (11) (2021) 1259.

[10] A. Menti, T. Zacharias, J. Milias-Argitis, Geometric algebra: a power-
ful tool for representing power under nonsinusoidal conditions, IEEE
Transactions on Circuits and Systems I: Regular Papers 54 (3) (2007)
601–609.

[11] D. Hestenes, G. Sobczyk, Clifford algebra to geometric calculus: a
unified language for mathematics and physics, Vol. 5, Springer Science
& Business Media, 2012.

[12] B. Jancewicz, Multivectors and Clifford algebra in electrodynamics,
World Scientific, 1989.

[13] R. Loudon, C. Baxter, Contributions of john henry poynting to the
understanding of radiation pressure, Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences 468 (2143) (2012)
1825–1838.

[14] X. P. Orbán, J. Mira, Dimensional scaffolding of electromagnetism using
geometric algebra, European Journal of Physics 42 (1) (2020) 015204.

[15] K. T. McDonald, Electrodynamics in 1 and 2 spatial dimensions,
https://physics.princeton.edu/ mcdonald/examples/2dem.pdf, accessed:
2012-01-30 (2019).

[16] D. Hestenes, New foundations for classical mechanics, Vol. 15, Springer
Science & Business Media, 2012.

[17] H. Grabinski, F. Wiznerowicz, Energy transfer on three-phase high-
voltage lines: the strange behavior of the poynting vector, Electrical
Engineering 92 (6) (2010) 203–214.

[18] R. Redlich, Note on power and poynting vector in low-frequency
circuits, IEEE Trans. on Education 27 (2) (1984) 109.

Authorized licensed use limited to: UNIVERSIDADE DE SANTIAGO. Downloaded on July 12,2022 at 13:22:29 UTC from IEEE Xplore.  Restrictions apply. 


