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A B S T R A C T

How do societies become more complex? Are there specific scales at which they are reorganized into emergent
entities? Social dynamics are shaped by each person’s actions, as well as by collective trends that emerge
when individuals are brought together. Features like population size, polarization, cohesion, or hierarchy add
nuance and complexity to social structure, and might be present, or not, for societies of different sizes. Here
we show that, while societal complexity increases monotonically with population, there are specific scales at
which complexity builds up faster – one of them is close to Dunbar’s number (an estimation of the number of
meaningful relationships that individuals can sustain). We have observed this by measuring, as a probe across
populations of varied sizes, the sociolinguistic process that has unfolded over decades within the Spanish
region of Galicia. For this, we have developed a methodological tool (social complexity spectrum), inspired by
theoretical considerations about dynamics on complex networks, that could be applied in further study cases.

Teaser: Changes in collective human behavior triggered by a critical population size found through
sociolinguistic analysis
1. Introduction

If we put together grains of sand, one by one, at some point they
become a mountain. When does that happen? Daniel Dennett reminds
us that such questions might not have a clear-cut answer, and teaches
us how to live with the ensuing scale of greys [1]. Yet some complex
systems often change radically as their size crosses certain thresholds.
At those points, emerging behaviors start shaping the fate of the whole,
overriding the more straightforward dynamics of the parts. Then, as put
beautifully by William P. Anderson, ‘‘More is Different’’ [2].

As humans, we contemplate the duality of our autonomy and of
belonging to an eusocial species. Tensions between both levels of
Darwinian selection (the organismal and the societal) largely underlie
our conflicting nature [3]. Individually, every modern human has likely
experienced ‘being dragged by the masses’. But, when does a gathering
of people become an emergent entity? How many such transitions
might take place as societies grow? Are these processes gradual, as
with mountains and grains of sand? Or can we spot relevant scales at
which the dynamics of human behavior is altered by emerging levels
of complexity?

∗ Corresponding author at: Systems Biology Department, Spanish National Center for Biotechnology (CSIC), C/ Darwin 3, 28049 Madrid, Spain.
E-mail address: lf.seoane@cnb.csic.es (L.F. Seoane).

We tackle these questions empirically through a process of opinion
dynamics that has played out over social groups of different complexity.
Specifically, we study socioliguistic processes of language shift that
have occurred in the Spanish Autonomous region of Galicia over the
last ∼100 years [4]. In this process, the vernacular, Galician, tended
to be substituted by Castilian Spanish. Both are romance languages
with high mutual intelligibility, which might enable long-term bilin-
gualism and coexistence of both tongues [5]. These dynamics have
unfolded simultaneously, at different speeds, in a range of population
centers, from very rural ones to larger cities. Galicia presents quite
unusual demographics: It covers about 6% of the territory of Spain
and houses a similar percentage of the country’s population. Notwith-
standing, Galicia contains roughly a half of all 60 000 Spanish Singular
Population Entities (SPEs, defined as any unit such as villages, cities,
etc.). Among these, as of 2016, 27 000 Galician SPEs had less than
100 inhabitants [6]. This gives us a great sampling of social processes
happening on communities with different structures. If we assume that
SPEs of different sizes constitute underlying social groups of varying
complexity, we are provided with a unique opportunity to study at what
emerging social scales human behavior is altered in a noticeable way.
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Fig. 1. A complex network structure might slow down social dynamics. In [11] it is observed that certain opinion dynamics can take longer to reach their absorbing steady state
due to a complex structure of the underlying social network. This figure illustrates a mechanism behind this phenomenon. In a clique (top), which is a simple kind of graph,
all network individuals interact with each-other. This enables that the average opinion observed by the 𝑖th individual equals the actual average opinion across the whole group,
⟨𝑥⟩𝑖 = ⟨𝑥⟩. Conflicting views are resolved as quickly as possible (a red dashed vertical line marks when the steady state is reached in each case). In random, yet unstructured
networks (middle), which are fairly simple as well, not everybody is connected with everybody else. However, a node’s neighbors are relatively well distributed across the network,
thus its perceived average opinion comes from a good-enough sampling of the group’s state, ⟨𝑥⟩𝑖 ≃ ⟨𝑥⟩. Dynamics are resolved only slightly more slowly. In complex, structured
etworks, individuals cluster locally with few nodes acting as gate-keepers of larger groups (bottom). Individuals inside each group perceive averaged opinions that might depart
rom the network’s consensus, ⟨𝑥⟩𝑖 ≠ ⟨𝑥⟩. Hence, opinion dynamics are slowed-down as bottlenecks prevent the immediate invasion of each cluster.
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Social exchanges happen within a social substrate, often modeled
s a graph or network. In them, people are nodes, and edges represent
xisting interactions – whether virtual or of physical contact. Networks
an have different overall structures – e.g., small world [7], hierarchical
r more horizontal [8], etc. Distinct network structures enable or hin-
er the unfolding of different phenomena, such as opinion dynamics,
pidemic spread, coordination towards a goal, etc. For example a
ufficiently sparse network of physical contacts can halt the spread of
virus – as confinement measures during the recent pandemic have

llustrated. Less trivially, Darwinian evolution can be accelerated if it
appens over networks with specific shapes [9,10].

A similar interplay between network structure and dynamics can ap-
ly to other social processes – specifically, to opinion dynamics such as
he decision to keep or change your tongue. In a computational study,
oivonen et al. [11] showed how certain classes of opinion dynamics
ave longer relaxation times in more complex networks, while the
ame processes converge faster to their steady states in simpler graphs.
n more trivial networks (Fig. 1, top and middle), each individual
amples accurately the social group’s average opinion, and dynamics
an be resolved quickly. In more complex graphs (Fig. 1, bottom)
odes of similar opinion can form clusters guarded by gatekeepers that
ardly flip their opinions. These clusters become difficult to penetrate.
ence, some individuals are cut out of the emerging consensus, and
onvergence to a homogeneous opinion is hindered. Inspired by this,
t was found empirically that sociolinguistic dynamics in Galicia have
nfolded faster in more rural areas, and slower in more urban ones [4].

This last study assumed that urban communities had a more com-
lex social structure, and it used the threshold of 5000 inhabitants to
onsider a SPE as urban. This choice was based on Spanish legisla-
ion [12] that demands that counties (which usually include several
PEs) over that size present a series of structures and services (a public
ark and library, a market place, and a waste management system),
otentially marking a jump in social network complexity. Further
emands of urban equipment do not happen below 5000 inhabitants,
r above until 20 000 and 50 000 inhabitants. However, can we relax
his definition of urban and come up with a more organic way to
ind salient leaps in social complexity? Perhaps, if such changes in
omplexity affect ongoing opinion dynamics (as those simulated by
oivonen et al. [11]), we can look at empirical data of language shift
o spot the relevant scales at which complexity builds up.

In this paper we study this possibility. We try a range of scales
2

based on population sizes), and check whether each scale is a good
eparation between simple versus complex social networks. Follow-
ng [11], our test is whether sociolinguistic dynamics tend to play
ut faster in ‘simpler’ networks. We measure this through correla-
ions between a region’s purported complexity and the rate at which
ociolinguistic dynamics have unfolded in that area. This renders a
ind of ‘spectrogram’ in which dips are visible at population scales
ith non-trivial correlations (much like a spectral line is missing in
ptical spectroscopy when light traverses specific chemical compounds
hat absorb a specific wavelength). We find two salient scales that,
ccording to our criterion, would separate simpler from more complex
ocial networks. Our results suggest that at those scales some emergent
omponent takes over and alters the pace at which sociolinguistic
ynamics play out. One of these scales corresponds to the threshold
sed in [4], which was based on urban planning. The other one, more
rominent, happens at much smaller community sizes (∼200 people).

It does not correlate with any feature marked by Spanish law. Rather,
its proximity to Dunbar’s number (an empirical cognitive limit to the
number of relationships that animals can have [13–21]) suggests an
organic emergence of social complexity.

In Section 4.1 we describe the sociolinguistic dynamics of interest
to us and the empirical data available. In Section 4.2 we introduce the
mathematical model that we fit to the data. The fitting procedure is
explained in Section 4.3. We use the resulting model parameters to
estimate the rate at which the dynamics unfold in each geographical
region. In Section 2.1 we introduce our social complexity spectrum. We
explain how we define separations between potentially simple and
potentially complex social networks, and how we evaluate the goodness
of these separations. Sections 2.1 and 2.2 contain our main results.
Namely, that we identify two outstanding scales at which leaps, or
buildups of social complexity would happen according to our crite-
rion. Section 2.3 further explores the spectrum of social complexity as
a methodological tool. Similarly to physics and optical spectroscopy,
we observe ‘red-’ and ‘blue-shifts’ as the overall demographics has
changed over two decades. We illustrate how this can help us refine
the separation of simple and complex social networks. We wrap up the
paper with a discussion of our findings in Section 3. We further argue
that the ‘‘complexity spectrum’’ might be a powerful tool to uncover

scales of social relevance when applied to similar dynamics.
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2. Results

2.1. Building a spectrogram of social complexity

In [11], Toivonen et al. found, in simulations, that certain (not all)
kinds of opinion dynamics relax faster to their steady state when they
unfold in more complex graphs. Specifically, they simulated opinion
dynamics on (i) rather simple random networks, and on (ii) more
complex graphs that have a mesoscale because they consist of ran-
domly connected cliques. In the former, the dynamics tend faster to
their absorbing state. In the later, the lifetimes of transitory states
of certain ordering dynamics present broad distributions – meaning
that they might take arbitrarily long times to settle into a final, stable
configuration. The kind of ordering dynamics studied in [11] consist
of nodes that change their state depending on the preferences of their
neighbors – much like speakers might change their tongue influenced
by others whom they communicate with. Indeed, the dynamics in [11]
have been used to simulate language shift in networks of connected
speakers.

Inspired by this, Mussa Juane et al. [4] reasoned that sociolinguistic
dynamics might unfold slower in more complex interaction networks.
They also hypothesized that the amount of urban-dwelling inhabitants
of a region might capture the complexity of the networks that would
underlie social interactions in the area. If all these assumptions were
correct, the rate at which sociolinguistic dynamics proceed should
correlate negatively with the fraction of urban dwellers – as they
empirically found. The speed of sociolinguistic dynamics in [4] was
measured similarly to how we do it here – by fitting the model of
language shift from Eqs. (2) to our same dataset, and considering the
parameter 𝑐𝑖 for each Galician region. The only effect of this parameter
on the dynamics is to tune their velocity.

For the fraction of urban dwellers, Mussa Juane et al. considered
an urbanity threshold, 𝜃𝑢, and counted the fraction of people in each
egion that lived in SPEs above 𝜃𝑢. To better formalize this, consider all
alician SPEs, and let us label them {𝜈𝑗 , 𝑗 = 1,… , 𝑁𝑆𝑃𝐸}, with 𝑁𝑆𝑃𝐸

the total number of Singular Population Entities in Galicia. Let us also
label SPEs within a single region as {𝜈𝑘𝑖 , 𝑘 = 1,… , 𝑁𝑆𝑃𝐸

𝑖 }, with 𝑁𝑆𝑃𝐸
𝑖

the number of SPEs in region 𝑅𝑖. We then define the urbanity index of
this region as:

𝑢𝑖 =
∑

𝑘 𝐻(𝜈𝑘𝑖 ) ⋅ 𝛩
(

𝐻(𝜈𝑘𝑖 ) − 𝜃𝑢
)

∑

𝑘 𝐻(𝜈𝑘𝑖 )
; (1)

where 𝐻(𝜈𝑘𝑖 ) returns the number of inhabitants in 𝜈𝑘𝑖 , and 𝛩(⋅) is
eaviside’s theta function (which, in this case, is 1 if 𝜈𝑘𝑖 has 𝜃𝑢 or more

nhabitants, and 0 otherwise). Thus, 𝑢𝑖 is the fraction of people in region
𝑖 that live on SPEs with more than 𝜃𝑢 inhabitants. Information about

he number of inhabitants in each SPE is provided yearly by the IGE
ince 1999 [23]. For the remainder of this section and in Section 2.2,
e use the data from 2002. This choice is justified, and then relaxed,

n Section 2.3.
Mussa Juane et al. took a value 𝜃𝑢 ≡ 5000 guided by Spanish

aw, which states that counties (which, however, might include several
PEs) above this size must offer a series of services – specifically: a
ublic park and library, a market place, and a waste management
ystem. The hope was that this threshold would separate between
impler and more complex SPEs, and hence that a negative correlation
etween 𝑐𝑖 and 𝑢𝑖 should be observed – as it was the case.

We move beyond this and wonder whether other scales, differ-
nt from 𝜃𝑢 ≡ 5000, might segregate simpler from more complex
ocial networks as well. Therefore, we make the urbanity index an
xplicit function of the threshold, 𝑢𝑖 ≡ 𝑢𝑖(𝜃𝑢), and explore how the
orrelation 𝑟(𝜃𝑢) between 𝑐𝑖 and 𝑢𝑖(𝜃𝑢) changes as a function of our
arying definition of urban, 𝜃𝑢. Fig. 2b2 plots this behavior. We term
uch representation a spectrogram of social complexity or a complexity
3

pectrogram.
We might expect that more populated SPEs are naturally more
complex than SPEs with less inhabitants. In absence of other processes,
the sheer combinatorial opportunity of more interactions might suffice.
We do not discard that large enough cities might drain the complexity
of its constituent parts, resulting in simpler networks. We come back
to this possibility in the Discussion. But let us put this case aside
for a moment and consider that complexity tends to increase rather
monotonically with population size. Then, if the main hypotheses in
this paper hold true, we would expect 𝑟(𝜃𝑢) < 0 for any 𝜃𝑢, as any
cale would separate, on average, simpler from more complex social
etworks. Fig. 2b2 shows that this is the case. This result is replicated in
ll our complexity spectra. We do not expect a perfect correlation, given
ll the sources of noise in the process – e.g. urban areas might have
eclined yet remain complex, the sociolinguistic dynamics is inherently
tochastic, etc.

A second possibility is that, at a certain scale, 𝜃∗𝑢 , social complexity
uilds up rather suddenly. If that is the case, SPEs with populations
elow such size, 𝐻(𝜈𝑗 ) < 𝜃∗𝑢 , should be notably simpler than SPEs above
he threshold (as illustrated in Fig. 2d1 and d2). In such case, 𝜃∗𝑢 should

mark a rather good separation between simpler and more complex
social networks, and correlation between the speed of social dynamics,
𝑐𝑖, and the urbanity index at that scale, 𝑢𝑖(𝜃∗𝑢 ), should correlate notably
better than for other values of 𝜃𝑢 ≠ 𝜃∗𝑢 . This should be noted as a
dip (accompanied by a local or global minimum) in the complexity
spectrum – reminding us of gaps in optical spectroscopy after light of
a specific wavelength has been absorbed.

The global minimum of the spectrum in Fig. 2b2 is found at 𝜃𝑢 =
∗
𝑢 ≡ 4912 inhabitants. The complexity spectrum indeed sees a steep
escent as this threshold is approached from the left. This would
ndicate, within our framework, that choosing a threshold below 𝜃∗𝑢
ould be a much worst separator between simpler and more complex
PEs. However, values of 𝑟(𝜃𝑢) remain around a similar value for 𝜃𝑢 >

𝜃∗𝑢 . This would indicate that complexity keeps building up steadily
afterwards, and that 𝜃𝑢 > 𝜃∗𝑢 (up to 𝜃𝑢 = 6000 and perhaps beyond)
separate similarly well between simpler and more complex SPEs.

We should note, on the one hand, that there are not so many SPEs
with that many inhabitants above 𝜃∗. Hence, the complexity spectrum
around those values is expected to be less well sampled, and to vary
in a stepped fashion, remaining constant for ranges of 𝜃𝑢 (as seen
in Fig. 2b2). On the other hand, 𝜃∗ is close to 5000 inhabitants, the
threshold chosen in [4]. That choice was guided by Spanish law, which
mandates increased urban services in counties (not SPEs) above that
population size. This nuance prevents us from suggesting that the law-
mandated increase in urban structures might be the cause of the steep
complexity buildup at 𝜃∗𝑢 .

2.2. An additional build-up of complexity around Dunbar’s number

The complexity spectrogram in Fig. 2b2 presents numerous local
minima. Each one suggests a population size at which separation
between simpler and more complex social networks would be more
prominent than in its neighborhood – if our hypotheses hold true. Most
of these local minima do not stand out prominently, and might be due
to the stochasticity of our system. But at least one such feature sticks
out at around 200 inhabitants, where a smooth, well marked dip seems
to form.

We locate the corresponding local minimum at 𝜃†𝑢 ≡ 194. Fig. 2a1
shows 𝑐𝑖 versus 𝑢𝑖(𝜃

†
𝑢 ). This plot illustrates the negative correlation

between the speed of the dynamics and the urbanity index, but it also
suggests that a linear relationship between those quantities might not
be the best descriptor. In most complex systems, relevant properties
often scale as power laws [24]. If the relationship between the dynamic
rate and the urbanity index were of the kind: 𝑐 ∝ 𝑢𝛽 , with 𝛽 < 0, this
would result in a monotonically decreasing relationship such that more
complex SPEs would see an exponentially slower dynamic unfolding.

Put otherwise, such scaling also fits our hypotheses.
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Fig. 2. Social complexity spectra. a Examples of correlations between urban indexes and dynamic rates, taking 𝜃𝑢 as the local minima in the prominent dip at low population
izes. These local minima are marked by 𝜃†𝑢 = 194 for the linear spectrum (a1) and 𝜃̂†𝑢 = 183 for the logarithmic spectrum (a2). b1 The black curve traces the fraction of SPEs with
opulation below a given 𝜃𝑢. The red plot marks the fraction of Galician population living in SPEs sized less than 𝜃𝑢. This panel shows that nothing suspicious, which could trivially
xplain the properties of our spectra, happens at the outstanding scales (marked with vertical lines). b2 Social complexity spectrum (black curve) assuming the straightforward,
inear relationship 𝑐 ∝ 𝑢. Standard deviation of the spectrum (gray shading) was estimated by 10-fold jackknifing [22]. A red dashed line marks 𝜃∗𝑢 = 4912 and a blue dotted line

indicates 𝜃†𝑢 = 194. A null model was implemented by reshuffling all SPEs to the 20 regions. This resulted in a spectrum centered around 𝑟(𝜃𝑢) ∼ 0. The red-shaded area marks
two times the worst-case standard deviations found in that model (see Sup. Fig. 2 for typical standard deviations, which are much more lenient). Thus, 𝑟(𝜃𝑢) values below the
shading have a chance less than 0.023 of happening by chance. b3 Same for the logarithmic spectrum, which assumes 𝑐 ∝ 𝑢𝛽 . The red dashed line marks 𝜃̂∗𝑢 = 4735 and the blue
dotted line indicates 𝜃̂†𝑢 = 183. Areas shaded in green and blue are amplified in d1 and d2 respectively. c Same as in a, but for the spectral dip at large population size, with local
minima marked at 𝜃∗𝑢 = 4912 (c1) and 𝜃̂∗𝑢 = 4735 (c2). d Cartoons illustrating the main implications of our hypotheses: A scale at which social complexity builds up very quickly
segregates simpler from more complex social networks. Dynamics being slower in more complex networks would result in a good, negative correlation between dynamics rates
within a region and that region’s urbanity. We portray two distinct jumps in complexity to suggest that the social complexity buildup at around 𝜃̂†𝑢 (d1) is likely very different
from the one around 𝜃∗𝑢 (d2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2b3 shows complexity spectrograms based on the correlation,
̂(𝜃𝑢), between the logarithm of the dynamic rates, ln(𝑐𝑖), and the
logarithm of the urbanity indexes, ln

(

𝑢𝑖(𝜃𝑢)
)

. We found that these
spectrograms achieve more negative correlations and a much more
marked dip at around 𝜃†𝑢 (precisely at 𝜃̂†𝑢 ≡ 183). Actually, in this
representation, 𝜃̂†𝑢 becomes the global minimum across all scales, and
reaches a correlation of 𝑟̂(𝜃̂†𝑢 ) = −0.68, smaller than the 𝑟(𝜃∗𝑢 ) = −0.61
from the linear representation. This suggests, on the one hand, that
𝑐 ∝ 𝑢𝛽 is a more natural scaling than the linear one when comparing
dynamic rates and urbanity indexes. On the other hand, 𝜃̂†𝑢 = 183
appears as a more marked scale at which a higher, more sudden
4

complexity buildup happens.
Most other possible local minima from the linear spectrogram are
left behind by the global minimum at 𝜃̂†𝑢 . We still find a dip around
𝜃∗𝑢 (precisely at 𝜃̂∗𝑢 ≡ 4735). Indeed, this dip is now much more
pronounced, since 𝑟̂(𝜃𝑢) changes steeply both below and above 𝜃̂∗𝑢 . This
further suggests that there is a good separation between simpler and
more complex social structures at around that size. The spectrogram in
log representation displays lower values of 𝑟̂ for most of the range of
𝜃𝑢 except, interestingly, for 𝜃𝑢 > 𝜃∗𝑢 (green curve in Fig. 2b3).

We speculate that our marked dip at 𝜃̂†𝑢 = 183 might reflect an
organic emergence of hierarchy that might take place as human groups
become larger than Dunbar’s number. The underlying hypothesis here

is that the cognitive effort that people can devote to their peers is
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Fig. 3. Red- and blue-shifts in the social complexity spectrum. a Relative growth in the number of SPEs above a given 𝜃𝑢 between 2002 and 2011. This curve reflects how most
rural areas have been losing inhabitants during the last decades, while urban areas have been gaining them. These changes in population imply that minima in the spectra will
appear shifted with respect to their original position depending on the census year that we choose. Green and blue shading mark respectively the spectral dips at small and
large population sizes. b Global minima in the linear (black) and logarithmic (red) spectra as a function of census year. According to the gain in population for urban areas, the
linear minimum has shifted towards higher values of 𝜃𝑢. In a simile with light spectroscopy, we call this a blue-shift. c A red-shift (towards lower values of 𝜃𝑢) happens in the
logarithmic minimum. This is an average trend – some stochasticity is present in a year-by-year basis. d Social groups of a same size might differ in their complexity nevertheless.
If simpler groups tend to lose inhabitants (or to gain them more slowly) and more complex ones tend to gain them (or to lose them more slowly), scales separating simpler from
more complex social networks would become more outstanding. This seems to be the case in our dataset, as both 𝑟(𝜃∗𝑢 ) and 𝑟̂(𝜃̂†𝑢 ) decrease over time. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
finite [14,18]. Dunbar’s number was introduced as a speculative, soft
upper-bound to the number of meaningful relationships that individuals
can sustain. Based on these premises, a simple model of resource
allocation predicts different organizations of groups of sizes below and
above Dunbar’s number [17,20] – an empirically validated feature.

Back to opinion dynamics on a social network (such as our pro-
cess of language shift), in groups of sizes below Dunbar’s number
everybody can keep each-other as a meaningful relationship. Thus,
opinion influences would take place within a single clique – which is
a simple kind of graph. For groups of sizes above Dunbar’s number,
the limitation on meaningful relationships would result in social net-
works that increasingly present holes and emerging mesoscale motifs
– i.e. more complex interaction graphs – as meaningful relationships
become sparser and clustered. Indeed, groups growing beyond Dunbar’s
number have been reported to transit from horizontal into hierarchical
organizations [25,26]. According to our hypotheses, such increased
complexity would result on a slow-down of social dynamic rates at
around Dunbar’s scale – as we observe.

2.3. Refining the spectrogram through red- and blue-shifts of the spectra

The sociolinguistic dynamics that we study have taken place over
most of the 20th century. The web of interactions upon which the
language shift took place has likely been changing throughout this
long period – as people within SPEs died, were born, or migrated.
Ideally, we should have a direct measure of each SPE’s population
during the time-span of our dataset. That would allow us to derive a
more sensible, time-composite estimate of the underlying complexity.
But unfortunately we cannot retrieve this information. This is likely an
important source of noise and inaccuracy in our approach.

We trust that our best picture of each SPE’s population is given by
the 2002 census, published the year after the sociolinguistic polls were
collected, which display the social structure of one year before, when
5

the interviews took place. Note that these demographics are a shuffled
version of the actual numbers while our language shift dynamics took
place. This means that SPEs that were simpler during the studied
dynamics might have gained population throughout the 20th century,
and others that were more complex might have lost population. These
movements would result in miss-categorized SPEs that would lower our
𝑟(𝜃𝑢) and 𝑟̂(𝜃𝑢).

If, instead of disarranging the complexity-wise ordering, a series of
SPEs would all have gained a similar amount of population, instead of
lower 𝑟(𝜃𝑢) and 𝑟̂(𝜃𝑢) the effect on our spectrogram would be a shift
of 𝜃∗,†𝑢 and 𝜃̂∗,†𝑢 towards higher values. A similar, coordinated loss of
inhabitants would result in a shift of 𝜃∗,†𝑢 and 𝜃̂∗,†𝑢 to lower values with
respect to their (unknown) actual positions. Thus, similarly to how
spectral bands appear displaced in the light from stars far away, our
𝜃∗,†𝑢 and 𝜃̂∗,†𝑢 give us an idea of relevant scales. Unlike in the case of
distant stars, at the moment we cannot estimate how much our spectra
have shifted. Insisting on the metaphor with optimal spectroscopy, we
will speak of red-shifts when 𝜃∗,†𝑢 or 𝜃̂∗,†𝑢 move towards smaller values,
and of blue-shifts when they move towards larger ones.

There is one such shift that we can study. Note that changes in
the SPEs demographics after 2002 do not affect the sociolinguistic
dynamics – they have already happened, and are thus somehow fixed.
In the last decades, rural Galician areas have lost population, while
most urban ones have grown. Fig. 3a shows the relative change in the
number of urban SPEs as a function of 𝜃𝑢 between 2002 and 2011. A
negative value in this plot means that more SPEs have fallen below a
given 𝜃𝑢, while a positive value means that more SPEs that were smaller
than 𝜃𝑢 in 2002 had became larger than 𝜃𝑢 by 2011. The plot shows the
mentioned tendency of very rural areas to lose population, and of urban
areas to gain it. The curve is negative, but very close to 0, at around
𝜃̂†𝑢 ; and very positive at around 𝜃∗𝑢 . Thus, we would expect a red-shift
of the spectral dip at 𝜃̂†𝑢 , and a blue-shift of the dip at 𝜃∗𝑢 .

Fig. 3b and c show that this is the case. Fig. 3c zooms into the
displacement of 𝜃̂† to reveal that, while the red-shift is an average trend
𝑢
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over the years, the process is not completely smooth. The stochastic
reality of our social system introduces some jittering.

Fig. 3d shows that both 𝑟(𝜃∗𝑢 ) and 𝑟̂(𝜃̂†𝑢 ) change, actually improving
(becoming more negative) on average, as time passes. Focusing on 𝜃̂†𝑢 ,
this would mean that, among SPEs of a similar size, those that were
less complex have tended to lose population below the threshold in
that period, while more complex SPEs tended to grow in size – thus
𝜃̂†𝑢 becoming a better separator of dynamics in simpler versus more
complex networks. The best 𝑟̂(𝜃̂†𝑢 ) happens in 2011 (𝜃̂†𝑢 = 187, 𝑟̂(𝜃̂†𝑢 ) =
0.70).

The spectral blue-shift of 𝜃∗𝑢 is likely only observed until 2007.
After that time, the huge leap in 𝜃∗𝑢 (consistently defined as the global
minimum of the linear spectrum) probably results from that global
minimum actually jumping (not shifting) to other location.

. Discussion

In this paper we have put forward the social complexity spectrum,
computational tool to study how certain social dynamics change as
function of the size of the interaction network within which they

appen. We argue that, if two hypotheses hold true, our tool allows
s to study how social complexity changes as the underlying network
f interactions grows – both whether this change is gradual or if it
appens in more sudden buildups. One of our hypotheses, inspired
y computational results of opinion dynamics on graphs [11], is that
he sociolinguistic dynamics of Galician and Castilian Spanish coexis-
ence proceed faster when the web of interactions between speakers is
impler. Our second hypothesis is that population centers with more
nhabitants foster more complex social networks. All our empirical
esults are consistent with what we might expect if these hypotheses
old true.

Assuming that our premises are correct, our method quantifies how
arger population centers are, indeed, on average, more complex than
maller ones. This is indicated by sustained (at any scale, 𝜃𝑢) negative
orrelations, 𝑟(𝜃𝑢) < 0 and 𝑟̂(𝜃𝑢) < 0, between the speed of the
ociolinguistic dynamics and our measure of urbanity. Additionally,
arked dips of 𝑟(𝜃𝑢) and 𝑟̂(𝜃𝑢) (i.e. singular values 𝜃∗,†𝑢 and 𝜃̂∗,†𝑢 at
hich correlation becomes saliently more negative) suggest prominent
opulation sizes at which social complexity builds up more rapidly.

One of these singular scales is observed when considering a linear
elationship between dynamic rates and urbanity, 𝑐 ∝ 𝛼𝑢 (with 𝛼 < 0 a
egression coefficient). This outstanding scale falls near the threshold of
000 inhabitants chosen by an earlier study [4]. That choice was guided
y Spanish law, which mandates an increase of urban equipment in
ounties larger than 5000 inhabitants. Anecdotally, this is also known
s Plato’s number – Plato identified 5040 as an ideal number of citizens
n a Polis [27] –. In the future, we hope to perform similar analyses
n other countries to validate whether this outstanding scale persists
r not, and whether it might correlate with politically-induced changes
lsewhere.

Another singular scale appears when trying a power-law relation-
hip, 𝑐 ∝ 𝑢𝛽 (with 𝛽 < 0 another regression coefficient). This prominent
cale (𝜃̂†𝑢 = 183 inhabitants) is the most salient one throughout all our
pectrograms. This suggests, on the one hand, that 𝜃̂†𝑢 is the threshold
hat better divides simpler from more complex social networks – or,
lternatively, the point at which a steeper buildup of complexity hap-
ens. On the other hand, the more negative correlations found for 𝑟̂(𝜃𝑢)
or most of the 𝜃𝑢 range (𝑟̂(𝜃𝑢) < 𝑟(𝜃𝑢) for 𝜃𝑢 < 𝜃∗𝑢 ) suggests that the
ower-law scaling 𝑐 ∝ 𝑢𝛽 is more natural. If this is confirmed, the speed
f sociolinguistic dynamics would join many other quantities that scale
s a power of population size in urban centers – such as patents, wealth,
rime, transmissible diseases, etc. [24,28–30].

We speculate that 𝜃̂†𝑢 corresponds to an organic build-up of social
omplexity as communities cross a size threshold. We suggest that this
ize threshold is associated to Dunbar’s number, a soft limit proposed
6

or the maximal amount of meaningful relationships that humans (and c
ther animals) can sustain [13–18,20,21]. We argue that this cognitive
imit to relationships imposes a constrain on growing social networks
hat forces them to become more complex – presenting holes, mesoscale
ommunities dictated by affinity or proximity, etc. If this is correct,
alidating our method with similar dynamics in other regions should
ee 𝜃̂†𝑢 invariant. Within Dunbar’s theoretical framework, the other
elevant scale (𝜃∗ ≃ 5000 inhabitants) becomes meaningful as well: Both
̂†𝑢 and 𝜃∗ belong in the fractal progression of the Dunbar Graph [18]
nd correlates with yet another cognitive limit – specifically, with a
ound to the number of known faces to a person.

Testing our complexity spectrum in other cases should be a priority.
he logical follow-up is to look at similar sociolinguistic dynamics.
owever, finding good data is relatively difficult. In Galicia, we have

he additional advantage that relatively small population centers are
bundant and well sampled. We propose the hypotheses might hold for
ther kinds of dynamics that require interactions across an extended
ocial group before settling down into their stable configuration. Polit-
cal shifts and the adoption, and later fade-out, of cultural trends are
ood candidates. The pervasiveness of virtual social networks affords
unique opportunity to deploy our complexity spectrum – while in

uch case the speed of social media might interfere with the rate of
he dynamics themselves.

Another sense in which we hope to extend this methodology is
owards larger population sizes: Are additional complexity increases
radual? Or are there new singular scales at which sudden buildups
re observed? The size of the Galician population can only test our tools
p to some dozen thousand inhabitants, while cities around the world
ell surpass the dozen million mark. Finding singular scales of social

omplexity buildup is relevant to understand, manage, and engineer
ore optimal societies. Steep changes in the underlying social structure

nform us of qualitative elements that might be needed when modeling
uch systems. For example, if our speculation is correct, smaller groups
ould be modeled as cliques, while a rich mesoscale with holes is
eeded already for moderately large communities. The scale 𝜃̂†𝑢 would
nform us of when we need to change our modeling approach.

An interesting possibility arises if we relax our second hypothesis.
e assume that larger population centers result in more complex inter-

ction networks. What if this is not the case? An ingredient for internal
omplexity is certain sustained degree of heterogeneity. It is possible
o imagine a city large enough, and managed from an homogenizing
erspective, such that the diversity of its constituent communities is
rased. If this were the case, we speculate that such larger cities would
ave less complex interaction networks than smaller ones. Then, if
ur other hypothesis holds (i.e. that certain dynamics run faster over
impler interaction graphs), we would expect a positive correlation
hen testing the relationships between dynamic rates and urbanity.
hat would be reflected as peaks in our spectrogram. Their existence
ould point towards limits (perhaps of a physical or computational
ature) to the growing complexity of social networks. This possibility
onnects ultimately with the phenomenon of complexity drain [31],
y which certain systems present a conflict between their complexity
nd that of their parts. For example, species of ants with relatively
mall nests have more complex individual ants while their emergent
epertoire is more limited. On the other hand, species that form larger
ommunities present a much higher versatility at the super-organism
evel, while individuals are much simpler (i.e. more specialized and
ith limited capacities) [32].

A similar inversion (from dips to peaks) in our spectra would
e observed if we could prove social processes that happen faster
n more complex social networks. Speculatively, explosive percola-
ion [33] comes to mind. This is an extremely fast kind of phase
ransition, that is known to be induced when attempts are made to slow
t down [34]. In our context, slower social dynamics in more complex
ommunities could play the role of such deliberate efforts to slow down

hange, but eventually prompt a much faster (indeed explosive) shift.
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Fig. 4. Fitting model to empirical data. a Empirical data and model fit for region A Coruña 5, which results in the best-quality fit (smallest 𝜒2 value). b Same for region Ourense 2,
which results in the worst-quality fit. c Map of all Galician regions colored after the logarithm of the dynamic rate, ln(𝑐𝑖). Best -and worst-quality fit regions are marked respectively
with blue and red dots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Abusing the analogy, revolutionary processes are often kick-started in
urban settings.

A final, important test for our ideas is to correlate these results
with direct studies of social structure – which might not be an easy
enterprise. Because of this, we think that our spectrum offers a great
chance to study phenomena around social complexity and how it scales
with the size of a community.

4. Methods

4.1. Sociolinguistic dynamics and data

We investigate the emergence of singular scales of social complexity
by looking at how certain sociolinguistic dynamics have unfolded at
different speeds in regions that, potentially, contain distinctly com-
plex social networks. The dynamics that we use as a proxy is the
coexistence of Castilian Spanish and Galician. Both these tongues are
romance languages that coexist in the Autonomous Community of
Galicia, in north-western Spain. Mutual intelligibility between them is
large, allowing broad bilingual communities and, potentially, a sus-
tained coexistence between the two of them. While Galician is the
vernacular, a shift towards Castilian Spanish has been underway for
centuries, and has been especially accentuated during the 20th century.

The Galician Statistical Office (Instituto Galego de Estatística, IGE)
has tracked language use in different Galician regions and across de-
mographic groups. In periodic polls, informants would self-assess their
language use as ‘only Galician’, ‘mostly Galician’, ‘same use of both
tongues’, ‘mostly Spanish’, and ‘only Spanish’. We took informants at
either extreme of this scale as monolingual individuals of the corre-
sponding language, and grouped the central categories as bilinguals.
We are interested in the fractions of speakers in these groups.

IGE polls are stratified by age, which allows us to build a time-
series of fractions of speakers by projecting age groups in apparent
time [35–39] (meaning that the fraction of speakers of people of a
certain age become estimators of the fraction of speakers when those
people were born). Additionally, data is split into 20 independent
Galician subregions, each of which is made up of a collection of smaller
counties – but data for individual counties is not available. Hence, our
empirical dataset of sociolinguistic dynamics consists of 20 time series
with the fractions of monolingual Galician speakers, bilingual speakers,
and monolingual Spanish speakers (Fig. 4a–b). We base our work on
the IGE poll that allowed us of to estimate the fractions of those born
in 2001 [40].

4.2. Mathematical model

Beginning in the early 90s [41,42], a growing community of math-
ematicians, physicists, ecologists, and complexity researchers started
7

using systems of differential equations to model possible trajectories
of speakers of coexisting languages over time [43]. A turning point
was the work by Abrams and Strogatz [44], who fitted their equations
to data from dozens of cohabiting tongues. This inspired a wave of
new models whose stability and dynamical classes were thoroughly
analyzed [5,45–55], and which could in some occasions be tested
against empirical data [4,39,55–63].

Different authors would emphasize distinct ingredients that might
affect language coexistence, such as their spatial distribution, or bilin-
gualism (elements that the original model by Abrams and Strogatz did
not contemplate). We use one such variation that includes bilingual-
ism [45], whose stability and dynamics have been studied in detail [5,
50,53,54], and that has been fitted to data of different cohabiting
languages, including the Galician–Spanish case [4,39,63]. Contrary to
some other models with bilingualism, the one that we use is compatible
with either the stable coexistence of both tongues, or that one language
takes over and drives the other to extinction. Thus, the model is agnos-
tic regarding the stability of the coexisting couple, and the empirical
data can constrain model parameters towards either outcome.

The model consists of a system of coupled differential equations
that tracks the time-evolution of the fraction, 𝑥, of monolinguals of
language X (here, Galician); of the fraction, 𝑏, of bilinguals; and of the
fraction, 𝑦, of monolinguals of language 𝑌 (here, Spanish). Population
is normalized such that 𝑥 + 𝑦 + 𝑏 = 1, hence two equations suffice to
solve the system. These equations read:
𝑑𝑥
𝑑𝑡

= 𝑐
[

𝑠 (1 − 𝑘) (1 − 𝑥) (1 − 𝑦)𝑎 − 𝑥 (1 − 𝑠) (1 − 𝑥)𝑎
]

,

𝑑𝑦
𝑑𝑡

= 𝑐
[

(1 − 𝑠) (1 − 𝑘) (1 − 𝑦) (1 − 𝑥)𝑎 − 𝑦𝑠 (1 − 𝑦)𝑎
]

. (2)

This is a compact form of a simple normalized flow between mono-
linguals 𝑋 and 𝑌 and the bilingual group 𝐵. Details regarding the
interpretation of the equations and parameters can be found in the
model’s literature [4,5,39,43,45,50,53,54,63].

However, in a nutshell: The likelihood that a speaker of a tongue
(say 𝑋) starts using the other one (hence 𝑌 ) is proportional to the
prestige, 𝑠𝑌 , of the target language and to a monotonic function of the
target fraction of speakers. The prestiges (𝑠𝑋 and 𝑠𝑌 ) represent coarse
grained attractions exerted by either tongue. They are normalized (𝑠𝑋+
𝑠𝑌 = 1), such that it suffices to track 𝑠 ≡ 𝑠𝑋 . The monotonic function
of the target fraction of speakers is usually an attractive term that
makes the opposite language more appealing the more people that use
it. Say, a monolingual speaker of 𝑋, by switching to 𝑌 completely,
can communicate with a population of size 1 − 𝑥. In the model, the
appeal of that attractive population is modulated by an exponent 𝑎,
such that the flux away from 𝑋 becomes proportional to (1 − 𝑥)𝑎.
Same reasoning applies for fluxes away from 𝑌 . The parameter 𝑎 has
been termed volatility [43,51], implying that it captures how stable
established groups are. If 𝑎 > 0, larger groups tend to exert bigger
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attractive forces. If 𝑎 = 0, the size of the target population when
acquiring a new language does not matter. The case 𝑎 < 0 has been
tudied purely mathematically [53], and termed an ‘exotic’ scenario
ince it implies that speakers of a majority language tend to abandon
heir own tongue. Finally, of all speakers acquiring the opposite lan-
uage, a fraction 𝑘 retains both and a fraction 1 − 𝑘 becomes purely
onolingual in the target tongue. Since the larger 𝑘 is, the easier it is

o retain both languages, this parameter has been termed interlinguistic
imilarity. The parameter is extracted from fits to data, thus we prefer
o interpret it as a coarse grained, emergent, or effective interlinguistic
imilarity that might factor in multiple circumstances (e.g. languages
ight be grammatically distant, but social and economic constraints
ight increase the appeal and ease to keep them both [63]).

These three parameters, (𝑎, 𝑘, 𝑠), together with the initial conditions
(i.e. the fractions of speakers in each group at an arbitrary time 𝑡 = 0),
affect the qualitative trajectories of speakers over time. Depending on
their specific values, one language might drive the other to extinction,
or both might coexist asymptotically along with a bilingual group.
Depending on the values of the model parameters, the qualitative
outcome might or might not depend on the initial conditions. A final
model parameter, 𝑐, does not affect the long-term stability as it just
measures the speed at which the dynamics unfold. This is the most
important parameter for us.

Note that we are describing a scenario in which we care about frac-
tions of speakers of each tongue. Language change is a broader subject
with additional mechanisms through which two languages can affect
each-other’s vocabulary, grammar, and syntax. Fortunately, this inter-
esting phenomenology does not appear to be relevant in the time-scale
of the studied sociolinguistic process.

4.3. Fitting the mathematical model to empirical data

Let us label the 𝑁 = 20 Galician regions for which we have inde-
pendent data as {𝑅𝑖, 𝑖 = 1,… , 20}. Each region provides an empirical
time series for the fractions of speakers in each group: 𝑥̄𝑖 ≡ {𝑥̄𝑖(𝑡), 𝑡 =
𝑡0,… , 𝑡𝑒𝑛𝑑} and 𝑦̄𝑖 ≡ {𝑦̄𝑖(𝑡), 𝑡 = 𝑡0,… , 𝑡𝑒𝑛𝑑}. The fraction of bilingual
speakers is ignored, as we get it trivially from the normalization of the
population. Projection in apparent time yields 15 samples from years
𝑡0 = 1931 to 𝑡𝑒𝑛𝑑 = 2001, separated by 5-year intervals. For each region,
our task is to find the set of parameters, 𝛱𝑖 ≡ {𝑐𝑖; 𝑎𝑖, 𝑘𝑖, 𝑠𝑖; 𝑥0𝑖 , 𝑦

0
𝑖 },

that result in the time evolution that more accurately tracks that of
̄ 𝑖(𝑡) and 𝑦̄𝑖(𝑡). Note that we include the initial conditions, 𝑥0𝑖 and 𝑦0𝑖 , as
parameters to be fitted. Alternatively, we could have taken 𝑥0𝑖 ≡ 𝑥̄𝑖(𝑡0)
and 𝑦0𝑖 ≡ 𝑦̄𝑖(𝑡0); but we found that our procedure is robust and fast
enough to handle initial conditions as well.

To find the best set of parameters for each region we seek to
minimize the target function:

𝜒2
𝑖 (𝛱𝑖) =

1
2
∑

𝑡

[

(

𝑥̄𝑖(𝑡) − 𝑥𝑖(𝑡;𝛱𝑖)
)2 +

(

𝑦̄𝑖(𝑡) − 𝑦𝑖(𝑡;𝛱𝑖)
)2
]

. (3)

Note that 𝑥̄𝑖 and 𝑦̄𝑖 are empirical data while 𝑥𝑖 and 𝑦𝑖 correspond to
ariables of the model. Our numerical minimization of 𝜒2

𝑖 (𝛱𝑖) starts out
by choosing a random seed of parameters with 𝑐𝑖 ∈ [0, 1), 𝑎𝑖 ∈ [0, 2),
𝑘𝑖 ∈ [0, 1), and 𝑠𝑖 ∈ [0, 1). Additionally, random initial conditions are
generated with the constraints 𝑥0𝑖 ∈ [0, 1) and 𝑦0𝑖 ∈ [0, 1 − 𝑥0𝑖 ). We then
approximate the gradient of 𝜒2

𝑖 around these values by evaluating the
effect in 𝜒2

𝑖 of slight variations on each parameter:

∇𝜋
(

𝜒2
𝑖
)

=
𝜒2
𝑖 (𝜋 + 𝛥𝜋) − 𝜒2

𝑖 (𝜋 − 𝛥𝜋)
2𝛥𝜋

; (4)

where 𝜋 ∈ 𝛱 is one of our 4 parameters or 2 initial conditions, and
𝛥𝜋 = 10−4 implements the slight perturbation of each parameter. Each
evaluation of 𝜒2

𝑖 (i.e. each 𝜒2
𝑖 (𝜋 + 𝛥𝜋) and 𝜒2

𝑖 (𝜋 − 𝛥𝜋) for each 𝜋 ∈ 𝛱)
ntails a 4th-order Runge–Kutta numerical integration of the system of
qs. (2). Eq. (4) is evaluated for each 𝜋 ∈ 𝛱 independently. The result
f these evaluations is fed to the Adam algorithm [64], which returns an
8

mproved estimation of the gradient ∇𝐴𝑑𝑎𝑚
𝜋

(

𝜒2
𝑖
)

. We proceed to update
each parameter as 𝜋 → 𝜋−𝜂∇𝐴𝑑𝑎𝑚

𝜋
(

𝜒2
𝑖
)

, with 𝜂 = 0.0001. We iterate this
rocess until a satisfactory convergence (the algorithm halts when 𝜒2

𝑖
as not changed more than 10−7 in relative value within 100 iterations).

For each region, we launched 1000 parallel optimizations of 𝜒2
𝑖 with

ifferent initial seeds. Most minimization processes converged robustly
owards the same (numerically indistinguishable) final values of the
odel parameters and initial conditions. Their average became our
𝑖 ≡ {𝑐𝑖; 𝑎𝑖, 𝑘𝑖, 𝑠𝑖; 𝑥0𝑖 , 𝑦

0
𝑖 } for each region. A few processes were halted

efore convergence because they were taking too many iterations – they
ere likely stuck around low-quality local minima.

Realistic values of model parameters are constrained to: 0 ≤ 𝑘, 𝑠 ≤ 1
nd 𝑐 > 0. Other values of 𝑘 and 𝑠 can result in negative fractions
f speakers, and negative values of 𝑐 would see the dynamics running
ackwards. The final parameter has usually been studied with 𝑎 > 0.
his has been especially so when fitting the model to empirical data,
ince negative values of 𝑎 mean that speakers would be repelled by
heir own linguistic group if it is the largest one [53]. All fits to data
all within these constraints except for 4 regions (marked with asterisks
n Sup. Fig. 1a), in which we find negative values of 𝑎. In these cases, 𝑎
an be varied in a range that includes 𝑎 > 0 and (i) all other parameters
emain relatively unchanged and (ii) the fit does not result in much
orst values of 𝜒2.

For the results in the main part of the paper, we constrained fits in
hose 4 regions to present positive values of 𝑎 (which is more reasonable
rom a sociolinguistic viewpoint). Therefore, we fitted data in those
egions allowing only updates in model parameters (𝑐𝑖, 𝑎𝑖, 𝑘𝑖, and 𝑠𝑖),
sing 𝑥0𝑖 = 𝑥̄𝑖(𝑡0) and 𝑦0𝑖 = 𝑦̄𝑖(𝑡0) as initial conditions. This converged to
alues of 𝑎 > 0 in all cases. Then, separately, we refined the fit allowing
pdates on 𝑥0 and 𝑦0 only. In the Supporting Material we show all
alculations with the parameters obtained allowing 𝑎 < 0. The overall
esults remain similar. We also report what happens if we remove the
pathological regions. This had a non-trivial effect in our outcome.

After the fitting procedure, we are left with a reconstruction of the
ociolinguistic dynamics over time (Fig. 4a–b) for each region, 𝑅𝑖. Each
rajectory is given by a set of parameters 𝛱𝑖 ≡ {𝑐𝑖; 𝑎𝑖, 𝑘𝑖, 𝑠𝑖; 𝑥0𝑖 , 𝑦

0
𝑖 }. Of

hese, we are interested in the values, 𝑐𝑖, that determine how fast or
low the dynamics unfold in each region (Fig. 4c). Note that changing
his parameter does not alter whether both languages survive in the
ong term, or whether one drives the other to extinction. This parameter
nly speeds up or slows down the time evolution. In any case, here we
re not concerned with the long-term fate of the linguistic cohabitation.

The fitting procedure used in this paper differs from that in [4].
he current one converges to more optimal parameter values. This ex-
lains some numerical differences – which are expected from stochastic
rocesses nevertheless. The results from [4] are robust to these changes.
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