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APPENDIX A - Basic Concepts of GA
The use and management of vectors can be extended using Geometric Algebra (GA). Crucial to this is the geometric product,
an operation between two vectors aaa and bbb that produces a twofold result:

aaabbb = aaa ·bbb+aaa∧bbb (A.1)

where aaa ·bbb is a scalar (inner product), while aaa∧bbb (outer product) is a new entity known as a bivector. This geometric product
is invertible, which is a very useful property for algebraic calculations. This procedure allows us to construct new objects of
increasing dimensionality (or degree), called blades. These blades of different degree can be added together to form multivectors.
The set of multivectors in a space of a certain dimension has the structure of an algebra, and a basis can be established consisting
of elements of all the multivectors considered. In the Euclidean geometric space, it is possible to construct an orthonormal
vector basis formed by the elements σσσ1,σσσ2, . . . ,σσσ k with a positive signature σσσ2

i = 1. It is also possible to construct a bivectorial
basis:

σσσ i j = σσσ iσσσ j = σσσ i∧σσσ j =−σσσ ji (A.2)

with a negative signature σσσ2
i j = −1. In two dimensions (Euclidean plane), a general basis of the geometric algebra can be

σσσ = {1,σσσ x,σσσ y,σσσ xy} To understand the geometric product between a vector and a bivector from a purely geometric point of
view, we turn to the elements of the respective bases:

σσσ xσσσ xy = σσσ y =−σσσ xyσσσ x

σσσ yσσσ xy =−σσσ x =−σσσ xyσσσ y
(A.3)

We can see in Fig. A1 that it is possible to visually understand this product if we consider that the bivector σσσ xy acts on a vector
by rotating it by 90º. Depending on the side it multiplies by, the rotation can be positive or negative. This property is similar to
the imaginary unit j in the algebra of complex numbers. Recall that such an algebra is isomorphic to the even GA algebra of
dimension two, i.e., G+(2,0).

APPENDIX B - Maxwell’s equations in GA
To formulate Maxwell’s equations in GA terms, it is necessary to define a new operator that includes the time derivative and the
nabla operator. For the traditional three dimensional space, it reads

∇ = ∂0 +∇∇∇

∂0 = ∂t =
∂

∂t

∇∇∇ = ∂xσσσ x +∂yσσσ y +∂zσσσ z = ∂kσσσ k =
∂

∂xk
σσσ k

(B.1)

On the other hand, a multivector JJJ can be defined where the scalar part is the charge density, and the vector part equals the
current density.

JJJ = ρ− jjj

jjj = jxσσσ x + jyσσσ y + jzσσσ z = jkσσσ k
(B.2)

The negative sign of jjj is due to the transition between Euclidean space (with all positive signatures) and spacetime (where the
time signature is opposite to the space signature). On the other hand, we define the multivector electromagnetic field FFF as

FFF = eee+HHH (B.3)

where

eee = exσσσ x + eyσσσ y + ezσσσ z = ekσσσ k

HHH = Hzσσσ xy +Hxσσσ yz +Hyσσσ zx
(B.4)
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Figure A1. Visualisation of the geometric product between a vector and a bivector in the Euclidean plane. The vector
undergoes a rotation of ±90◦ due to the bivector σσσ xy =−σσσ yx depending on the multiplication side. As a rule of thumb, right
multiplication acts on the end of the vector while left multiplication acts on the origin of the vector.

Thus, Maxwell’s equations can be written as

(∂t +∇∇∇)(eee+HHH) = ρ− jjj (B.5)

In the general (3D) case, these equations can be separated into four different multivector terms corresponding to the four
equations forming Maxwell’s laws:

∇∇∇ · eee = ρ (Gauss’s Law)
∇∇∇HHH =− jjj−∂teee (Ampère’s Law)

∇∇∇∧ eee =−∂tHHH (Faraday’s Law)
∇∇∇∧HHH = 0 (Gauss’s Law for MF)

(B.6)

In a two-dimensional space, the last equation is no longer applicable. The physical variables involved can be described in their
components as follows

jjj = jxσσσ x + jyσσσ y

eee = exσσσ x + eyσσσ y

HHH = Hσσσ xy

(B.7)

Thus, with the above notation, 2D Maxwell’s laws look like this:

∂xex +∂yey = ρ (Gauss)
∂yH = jx +∂tex (Ampère-x)
−∂xH = jy +∂tey (Ampère-y)

∂xey−∂yex =−∂tH (Faraday)

(B.8)

To establish such expressions, we have taken into account the geometric products defined in (A.3). The above are differential
expressions, which can be integrated using the fundamental theorem of geometric calculus?

∫
V

∇∇∇MMMdτττ =
∮

S
MMM ·dsss (B.9)

where MMM is a general multivector, V is the enclosing hyper-volume and S is the boundary hyper-surface of V .
In three-dimensional Euclidean space, V would be a certain volume bounded by a surface S , while in a plane space, V

would be a surface bounded by a closed curve S . As a limiting case, for a one-dimensional world, V would be a segment and
S the pair of points bounding it.
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