
European Journal of Physics
     

PAPER

The bismar scale and elastic collisions: a
geometrical analogy
To cite this article: Xabier Prado et al 2024 Eur. J. Phys. 45 035009

 

View the article online for updates and enhancements.

You may also like
Long-lived Solar Neutron Emission in
Comparison with Electron-produced
Radiation in the 2005 September 7 Solar
Flare
T. Sako, K. Watanabe, Y. Muraki et al.

-

The winds of change: the role of
community engagement and benefit-
sharing in wind farm developments
O San Martin, E Morales, J Antas et al.

-

The fundamental optimal relations of the
allocation, cost and effectiveness of the
heat exchangers of a Carnot-like power
plant
G Aragón-González, A Canales-Palma, A
León-Galicia et al.

-

This content was downloaded from IP address 193.146.209.155 on 08/05/2024 at 13:24

https://doi.org/10.1088/1361-6404/ad3d42
/article/10.1086/509145
/article/10.1086/509145
/article/10.1086/509145
/article/10.1086/509145
/article/10.1088/1755-1315/1073/1/012006
/article/10.1088/1755-1315/1073/1/012006
/article/10.1088/1755-1315/1073/1/012006
/article/10.1088/1751-8113/42/42/425205
/article/10.1088/1751-8113/42/42/425205
/article/10.1088/1751-8113/42/42/425205
/article/10.1088/1751-8113/42/42/425205


The bismar scale and elastic collisions: a
geometrical analogy

Xabier Prado1 , Angel Paredes2,∗ , Iván Area2,3,
José Manuel Domínguez Castiñeiras1 and Jorge Mira4

1 Departamento de Didáctica das Ciencias Experimentais, Facultade de Ciencias da
Educación, Universidade de Santiago de Compostela, E-15782 Santiago de
Compostela, Spain
2 Instituto de Física e Ciencias Aeroespaciais (IFCAE), Universidade de Vigo, Campus
As Lagoas, E-32004 Ourense, Spain
3 Universidade de Vigo, Departamento de Matemática Aplicada II, Escola de
Enxeñaría Aeronáutica e do Espazo, Campus As Lagoas, E-32004 Ourense, Spain
4 Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de
Compostela, E-15782 Santiago de Compostela, Spain

E-mail: xabier.prado@gmail.com, angel.paredes@uvigo.es, area@uvigo.gal,
josemanuel.dominguez@usc.es and jorge.mira@usc.es

Received 18 December 2023, revised 20 March 2024
Accepted for publication 10 April 2024
Published 7 May 2024

Abstract
Throughout history, scales have served as instrumental tools for quantifying
the weight of objects, relying on a comparative assessment against a specified
reference weight. Scales featuring uneven arms, such as the bismar scale, have
proven particularly adept at gauging masses within a specific range relative to
a predetermined reference mass. On the other hand, the kinematics of elastic
collisions hinge on the inertial masses of the colliding entities. By observing
the aftermath of a collision between a known reference mass and an object of
unknown mass, one can deduce the latter’s mass. In this contribution, we
highlight a fascinating and clear analogy between these two methodologies.
We do so by adapting a geometric approach, initially applicable to the bismar
scale, to both non-relativistic and relativistic elastic collisions, encompassing
phenomena such as Compton scattering.
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1. Introduction

In the history of mankind there are a number of discoveries that have allowed great advances.
Among them, we would like to emphasize being able to compare weights of objects which is
essential for modern trade, activity that already began in the Neolithic period (about
7000–4000 b.C. depending on locations). The first evidence of scales and weights comes from
Egypt and it dates back to circa 3000 b.C. [1]. It is possible to find representations of
weighing scales in many ancient cultures such as China, from about 3rd to 4th century b.C. It
can be interesting to notice that other systems of culture such as Aztecs seem not to have
developed weighing systems [2].

The first idea for weighting is the most evident: equal-arm balances. We have to wait until
about 500 b.C. to have a completely different idea: unequal-arm balances. The main differ-
ence is that, in the first case, the weight of the object to be weighted has to be on one arm and
it has to be balanced by an identical weight on the other arm of the balance, with equal length.
On the other hand, for the so-called unequal-arm balances, the equilibrium point is obtained
by just adjusting the length of the arm, i.e. the compensation is no longer due to changes of
weight but changes of length. Representations of this type of balances go back to a comedy of
Aristophanes (421 b.C.). Nowadays the unequal-arm balances can be explained by using the
law of lever, that is detailed in our work.

Unequal-arm balance is not a unique object, but a class that includes different instruments.
The so-called bismar balance belongs to the class of unequal-arm balances, and it has a
mobile fulcrum, which is the main difference as compared with other unequal-arm balances. It
is also remarkable that the scale deviates from linearity. The etymology of this word points to
an Slavo-Lithuanian word, despite the fact that this balance also existed in the ancient Pompei
and therefore probably a Latin name might also exist, but we did not find traces of it.

All these balances gauge weight, which is proportional to the (passive) gravitational mass.
On the contrary, inertial mass is a parameter that signifies a body’s resistance to acceleration.
Despite the equivalence principle asserting that inertial and gravitational mass are identical,
they remain distinct in conceptual terms. Hence, it prompts the question of whether a system
akin to a balance exists for determining inertial mass, involving a comparison between a
reference mass and the mass under consideration. In this context, elastic collisions come to
mind, drawing on our common experience that contact with a larger mass results in a greater
momentum transfer. Remarkably, we will demonstrate a clear analogy between the bismar
balance and the computation of mass, achieved by enforcing the conservation of momentum
and energy in an elastic collision between two bodies of different masses. In particular, if the
masses are equal, the scenario would mirror that of an equal-arm balance.

It has been asserted that analogies can enhance student learning under specific conditions,
as discussed in [3] and related references. Accordingly, we anticipate that our discourse holds
educational value, offering an alternative approach to exploring connections between fun-
damental concepts in mechanics, such as the law of the lever, mass, momentum transfer, and
energy conservation.

Furthermore, our presentation relies on geometrical constructions. While both algebraic
and geometric codifications of a given problem are equally valid, some students may prefer a
geometrical approach over an analytical one, as highlighted in [4]. Even though the algebraic
account may appear more general and formally simpler, certain mathematicians reject such
simplicity, viewing it as lacking in the capacity to stimulate a deep understanding of the
subject matter among students, as noted by [5]. Beyond its application in lower undergraduate
education, we hope that our discussion might be of interest to graduate students and scholars,
who may find it an interesting curiosity. Our approach offers a novel viewpoint on well-
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known facts, with the hope that it proves stimulating and adds a new dimension to the
understanding of the subject.

Our main purpose is to provide a geometrical construction for the determination of mass in
a bismar scale and, then, to build analogous approaches for elastic collisions. In section 2 we
introduce the notion of bismar scale, we indicate how to relate it to Archimedes’ law of the
lever and we depict a ruler-and-compass method to compute the mass from the position of the
fulcrum at equilibrium. In section 3, we explain how the same ruler-and-compass method
applies to the outcome of a one-dimensional elastic collision. In section 4, we generalize the
construction to relativistic kinematics, including the limiting case of a massless particle. In
section 5, we discuss collisions for which ingoing and outgoing momenta are not collinear,
specifically illustrating the case of Compton scattering. Finally, in section 6 we summarize
and conclude.

As supporting material for this contribution, we have created a website [6] featuring a
collection of interactive apps that correspond to the various cases illustrated in the figures.
These applets allow readers to manipulate parameters and observe the corresponding changes
in results. Such virtual visual tools are particularly valuable for students as they augment the
learning process, fostering engagement and motivation, as highlighted in references [7, 8].

2. A geometrical view of the bismar scale measurements

The bismar scale is a type of unequal arms scale that was developed in ancient times for the
measurements of weight. It consists of a reference mass m that acts as a counterweight
attached to the edge of a bar. At the other end of the bar, we place the mass to be measured,
M. The fulcrum can be displaced in order to achieve an equilibrium.5 This is schematically
depicted in figure 1.

Since L and m are fixed for a given device, the massM can be determined once x is known.
Using Archimedes’ law of the lever:

( )=
-M

m

L x

x
1

As an aside, it is worth mentioning that bismar scales were used long before the law of the
lever was known, and the relation M(x) was determined empirically [9]. This is an example in
which technological developments helped in deriving scientific knowledge. In fact, the

Figure 1. A schematic view of a bismar scale. For a mind-blowing picture of an
artisanal bismar scale found in the ruins of Pompei, see [9].

5 The bismar scale should not be confused with the Roman steelyard, perhaps the better known class of unequal
arms scale. In a Roman steelyard, the fulcrum is fixed and the counterweight can be displaced. The geometrical
methods described in this contribution could also be applied to a Roman steelyard, but they fit better the bismar scale.
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influential Mechanical Problems by Aristotle, the oldest known treatise on Mechanics, were a
discussion on how to abstract concepts such as force, load, etc from an analysis of simple
technology [10].

Our goal now is to develop a geometrical method to compute M given an equilibrium as
that depicted in figure 1, by adapting known constructions [9, 11]. We do so by constructing
triangles in a way in which equation (1) can be related to a Thales theorem. This is shown in
figure 2. The horizontal solid line represents the scale with M and m at the endpoints, with its
center at point C and the fulcrum position for a given equilibrium is depicted by F. We then
introduce an arbitrary fiducial length l and draw parallel lines at distances l and 2l from the
scale, defining the points O, P and Q as shown in the figure. Extending the segment that joins
P to F, we find the point R.

From the similar triangles PQR and FCR, we find:

( )
+

=
-

 =
-L

h l

L x

h
h l

L x

x

2

2

2 2
2

Comparing to equation (1), we see that:

˜ ( )= + =
-

= =h l l
L x

x
l
M

m
MOR 3

Thus, by measuring the length of the OR segment, we can determine the mass M in terms of
the reference quantities l, m. Notice that for the figure we have taken M>m but the

Figure 2.A geometric construction to findM from a bismar scale with counterweight m
and fulcrum position in equilibrium at F.
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construction is equally valid for M<m. In the limiting case of M→ 0, the fulcrum would
approach the right edge of the bar, which is aligned with P and O.

Even if the length-mass relation (1) could be implemented within simpler graphical
constructions, the value of figure 2 is that it reproduces the actual geometry of the bismar
scale. It solves the measuring of an unknown mass with a bismar scale as the one in figure 1,
and it therefore encodes geometrically the fact that the point of equilibrium (the fulcrum) lies
exactly where the total torque of external forces vanishes.

3. Nonrelativistic elastic collisions

The central idea of the present contribution is to put forward a formal analogy between the
geometrical understanding of the bismar scale and that of elastic collisions. Other geometrical
constructions for the illustration of elastic collisions in Newtonian mechanics have been
presented in [12–14].

Consider the task of determining the mass, denoted as M, of a body that is initially at rest.
This can be achieved by propelling a reference mass, represented as m, towards the target with
an initial velocity denoted as vi, which we can take to be positive without loss of generality.
After the collision, it will have a different velocity vf, which we assume to be collinear to the
initial one (in section 6 we comment on the most general case). By measuring vf, we can
derive the value of the mass M. Notice the analogy with an unequal arms scale. The analog of
the equal arms case would amount to looking for a reference mass m such that vf= 0,
meaning that M=m. Obviously, with this ‘elastic collision scale’, we are determining the
inertial mass rather than the gravitational mass.

Denoting vM the final velocity of the body of mass M, conservation of momentum and
energy yield:

( )= + = +m v m v M v m v m v M v,
1

2

1

2

1

2
4i f M i f M

2 2 2

from which it is straightforward to prove:

( )=
-

+
M

m

v v

v v
5

i f

i f

which can be related to equation (1) if we identify L↔ 2vi, x↔ vi+ vf. With this
identification, we can draw a geometrical construction for M by adapting the plot of figure 2.
This is done in a v−M diagram, for which it is natural to take m to play the role of the
reference length l. The result is depicted in figure 3.

Once vf is known, the point R is found by tracing the PF line and the value ofM is given by
the OR segment. In the example of the figure, vf is negative and, as expected, vf→− vi would
correspond toM→∞ . On the other hand, positive vf corresponds toM<m andM→ 0 when
vf→ vi.

In figure 2, the point F, which is pivotal in the geometrical construction, stands for
fulcrum. On the other hand, in figure 3, the nomenclature F is also appropriate since it stands
for the final velocity state of the reference mass m. Specifically, this parameter denotes the
measurable quantity essential for the inference of the variable M.

Notice that in usual undergraduate education, the typical problems on elastic collisions
consist in finding the final velocities given the initial velocities and the masses (for related
geometrical constructions, see [12–14]). Our discussion here provides a complementary
vision of the same kind of kinematics, in which the mass is inferred from the velocity. This is
done to trace the analogy to weighing scales. However, it would be possible to set up this kind
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of situation in an undergraduate laboratory by working with sliders on a pneumatic bench.
The implementation and analysis of such educational experiment is beyond the scope of the
present work.

The geometrical representation of figure 3 highlights the analogy with section 2 and paves
the way for understanding the following relativistic cases, which are much more demanding.
Figure 3 differs from figure 2 in the magnitudes (velocities instead of arm lengths), and their
striking geometric equivalence makes clear the basic fact that the fulcrum, in this case,
corresponds to a reference system where both colliding objects have opposite momenta. This
is exactly what the conservation laws of energy and momentum require for a collision to be
elastic.

4. Relativistic elastic collisions

Special relativity is a more than a century-old theory that remains central to modern physics.
However, some of its counter-intuitive features still make it challenging for developing
efficient teaching and learning processes for secondary school students and undergraduates
[15, 16]. Improving education has been one of the goals of developing geometrical and
illustrative approaches to special relativity, see e.g. [17–20], including geometrical approa-
ches to elastic collisions [13, 21, 22]. In this context, and building on the idea of using scales
together with spacetime diagrams to delve into relativistic mass and energy [23], it is natural
to wonder whether the analogy between figures 2 and 3 can be generalized to the relativistic
case. We show below that there is indeed a simple generalization of figure 3 that does the job,
by utilizing Minkowski diagrams in momentum space [24].

For a one-dimensional elastic collision in special relativity, conservation of momentum
and energy read:

( )s s s g g g= + + = +m m M M m M m, , 6i f M i M f

where we are considering a reference particle of invariant mass m and initial velocity vi
impacting on a body, which is initially at rest, whose invariant mass M we want to determine.

Figure 3. A geometric construction to find M from the outcome of an elastic non-
relativistic collision. Notice the close similarity with the bismar scale of figure 2.
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After the collision, the particles have velocities vf and vM, respectively. For the different
velocities, we have introduced the notation:

( )g s=
-

=
-v

v

v

1

1
,

1
, 7

2 2

where we use natural units c= 1. Notice that γ� 1 but σ can take any real value. Clearly, we
have γ2− σ2= 1, which taking into account E=mγ, p=mσ, is proportional to the
hyperbolic dispersion relation E2− p2=m2. Equations (6), (7) lead to the relativistic
generalization of equation (5), relating M to the initial and final velocities of the particle of
mass m:

( )
g s g s

s s
=

-

+
M

m
. 8

f i i f

i f

We now outline the somewhat lengthy but straightforward computation to find (8) from (6)
and the γ2− σ2= 1 identity that is immediately found from (7). The goal is to eliminate vM
from the equations. Making g s- = 1M M

2 2 from the expressions in (6), we get:

( )
g g s s

g g
=

- +

-
M

m

1
. 9

f i i f

f i

If we now multiply the fraction of the right-hand side by
s s

g s g s
+

-
i f

f i i f
and we again use

γ2− σ2= 1 for the initial and final velocities, we find 1. This therefore proves equation (8).
Taking advantage from (8), in figure 4 we show the geometric construction to find M

graphically, in a very similar manner to the bismar scale. We use a Minkowski diagram in
momentum space with the origin of coordinates at O and draw the hyperbola corresponding to
E2− p2=m2. We mark in the hyperbola the point corresponding to the initial (pi, Ei) (point I)
and final (pf, Ef) (point F) states of motion (we assume pi> 0). We also mark (−pi, Ei) and (0,
m) (point C). As in the bismar case, we draw two equispaced horizontal lines to find P.
Finally, another horizontal from F leads to point C′. Again following figures 2 and 3 we

Figure 4. A geometric construction to find M from the outcome of an elastic relativistic
solution.
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extend the PF segment to find R and the length of the OR segment is the sought mass M. This
can be checked from the similarity of the triangles PQR and FC’R, that yields:

( )
g

s
g

s
¢
¢
= 

-

-
=

+C R

FC

QR

PQ

M m

m

M m

m
. 10

f

f

i

i

This can be readily proved to be equivalent to equation (8). For given values of the reference
mass m and its initial momentum pi, all the points of the diagram are fixed except for the
pivotal F which allows us to find R and thereby the mass M. The plot represents a case with
M>m that corresponds to pf< 0. It is easy to see from the graph that pf> 0 would
yield M<m.

Let us now discuss the limiting case in which m→ 0 so the particle we are launching is
massless. This situation can be described as a photon (E= p) that gets reflected from a mirror
of mass M. The mirror acquires some velocity vM and momentum M σM and therefore the
photon loses energy. We want to determine the mass of the mirror from the redshift of the
photon. Conservation of energy and momentum are:

∣ ∣ ( )s g= + + = +p p M M p M p, 11i f M i M f

Taking pi> 0, these equations have a solution with pf< 0 and:

∣ ∣
∣ ∣

( )=
-

M
p p

p p

2
. 12

i f

i f

We can construct an energy-momentum diagram for this case as the m→ 0 limit of figure 4.
The result is depicted in figure 5. The similarity of the PQR and FC’R triangles yield:

∣ ∣
∣ ∣

( )
+

=
-M p

pi

M p

p
13i f

f

which corresponds to the relation given in equation (12).

Figure 5. A geometric construction to find the mass of a mirror M from the energy loss
of a reflected photon.
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5. Non-collinear Compton scattering

In the previous sections, we have addressed collinear collisions. It is only natural to inquire
whether the construction can be extended to encompass the broader scenario wherein the
direction of the final velocity remains arbitrary. That is in fact the case, and we can build on
the one-dimensional results to address the more general cases. This concept embodies the
essence of dimensional scaffolding, advocating for the examination of intricate physical
relationships in lower dimensions. This approach facilitates a comprehensive understanding
of their fundamental aspects during early learning phases, while ensuring that subsequent
studies can seamlessly explore the complete dimensional complexity without hindrance [25].

The two-dimensional case can be solved with the one-dimensional method by finding an
appropriate pivotal point by projection. On the other hand, the most general three dimensional
case can always be reduced to the two-dimensional one by an appropriate rotation since the
ingoing and outgoing velocity vectors always lie on a plane. In particular, we will demon-
strate the adaptation of the scenario depicted in figure 5 to situations involving non-collinear
momenta. Analogous constructions for figures 3 and 4 can be developed using a similar
approach, though the details will not be provided in this discussion.

Let us consider a massless particle (say, a photon) with initial momentum along the x axis,
and therefore with four-momentum (pi, pi, 0, 0) (point I), where we assume pi> 0. It impacts
with a particle of mass M, initially at rest. After the elastic collision, the four-momentum of
the outgoing photon is (|pf|, pf,x, pf,y, 0) (point F) with ∣ ∣ = +p p pf f x f y,

2
,

2 and that of the
particle is M(γM, σM,x, σM,y, 0). Clearly, this corresponds to the kinematics of Compton
scattering. Preservation of energy and momentum leads to the following equations:

∣ ∣ ( )g s s+ = + = + = +p M p M p p M p M, , 0 14i f M i f x M x f y M y, , , ,

As in previous sections, we are interested in obtaining the mass M in terms of the photon
momentum. From equation (14), we find:

∣ ∣
∣ ∣

( )=
-

-
M p

p p

p p
15i

f f x

i f

,

which, in the collinear case |pf|=− pf,x, clearly reduces to equation (12). We are interested in
determining M from a geometrical construction in energy-momentum space. This is shown in
figure 6. First, we find F′ as the projection of F onto the py= 0 plane, namely F′ has
coordinates (|pf|, pf,x, 0, 0). Then, we find F″ as the point of the light-cone (q,− q, 0, 0) that is
found by extending the IF′ segment. Once we have F″, we proceed as in figure 5, see figure 6.

Comparing figure 5 to figure 6, it is clear that from the similarity of the PQR and FC’R, we
have:

( )=
-

M
p q

p q

2
16i

i

which is simply equation (12) with |pf| replaced by q. Finally, we need to compute q in terms
of the other quantities. Since F″, F′ and I are aligned by construction, comparing the triangles
F′SF″ and ITF″ of the figure, we have:

∣ ∣
( )

-

+
=

-
+

p q

q p

p q

p q
17

f

f x

i

i,
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from where we get:

∣ ∣
∣ ∣

( )=
-

+ -
q p

p p

p p p2
. 18i

f x f

f x f i

,

,

Finally, inserting equation (18) in equation (16), we recover equation (15), completing the
proof that the geometrical construction gives the correct result.

6. Summary and discussion

The weight of objects is closely linked to their gravitational mass and its measurement has
been of great practical importance for millennia. Inertial mass is a different concept, mea-
suring of an object’s resistance to acceleration when a force is applied. Inertial masses are
measured in different ways, but we have presented here a series of thought experiments from
which it can be determined from the kinematic outcome of elastic collisions with some
reference mass. Conceptually, this reference mass plays the same role as the known coun-
terweight in a balance. We have shown that there is a clear formal analogy between these
procedures, in which conservation of energy and momentum, together with their dispersion

Figure 6. FindingM with the kinematics of Compton scattering, from the generalization
of the geometrical method to determine masses in the bismar scale. On the left, we
present a three dimensional plot that shows how to obtain the point F′ by projecting F
and F″ by extending the IF′ segment. The blue ellipse is the intersection of the light
cone with the plane that contains I, F and F′. Notice that any point of the ellipse for the
final four-momentum gives rise to the same F″ and therefore it corresponds to a given
mass M, as it should be expected since that is the mass of the particle. On the right, we
show the py = 0 plane. Once the pivotal F″ point is known, the geometrical procedure
to determine M follows as in figure 5.
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relation, take the role of Archimedes’ law of the lever. In particular, we demonstrate the direct
translation of a geometrical method used for determining mass equilibrium in a bismar scale,
illustrated in figure 2, to the realm of nonrelativistic kinematics of collinear elastic collisions
(figure 3). Expanding the applicability, we extend this methodology to relativistic collisions,
leveraging Minkowski diagrams in momentum space (figure 4), encompassing phenomena
like photon reflection depicted in figure 5. Finally, we showcase the generalization of this
construction to non-collinear momentum transfer scenarios, exemplified by Compton scat-
tering (figure 6).

It has been shown already [12–24] that geometric diagrams are helpful to relate relativistic
problems to their non-relativistic counterparts, as well as to provide exact solutions. In
particular [13], presents the concept of a spacetime lever, where the fulcrum embodies the
reference frame in which the measurements are made simultaneously. If the lever is of the
bismar type—that is, with a mobile fulcrum—the corresponding diagrams should show this
fact visually. In the non-relativistic case, changing the reference frame does not affect the
simultaneity, which remains always horizontal in spacetime, and this is the reason for the
solid horizontal black line in figure 3. In the relativistic case, however, changing the reference
frame alters the simultaneity, which is increasingly tilted following a hyperbolic line in
spacetime due to the Lorentz transformation, as can be seen in figure 4. For massless particles
like photons in Compton scattering, this hyperbola degenerates in two diagonal lines for the
one-dimensional case, as in figure 5. In the most general case, the diagonal lines stretching in
all directions build the so-called null cone represented in figure 6.

With these geometrical constructions, we aspire to offer a valuable resource for secondary
school students and those in early undergraduate education, providing a means to solidify
their grasp of fundamental concepts like relativistic and nonrelativistic kinematics, energy and
momentum, as well as gravitational and inertial mass. Our approach involves an alternative
methodology centered around analogies and geometrical constructions. Moreover, a set of
interactive applets [6] should provide a valuable visual tool. Additionally, we hope to engage
experienced readers with our presentation, offering a fresh perspective on familiar concepts.
Our work endeavors to establish thought-provoking connections between disparate physical
situations, illustratively expressed through the analogy of geometrical constructions for
determining mass in diverse physical scenarios.

This teaching strategy implies a visual scaffolding through increasing dimensions, as
explained in [25], and it has been already tested at the secondary school level, with interesting
results [26]. The present paper offers an additional contribution in this direction.
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