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1.1 Gamma-ray transitions
In a hot plasma, excited states in a given nucleus are thermally populated through photon absorption, Coulomb
excitations by surrounding ions, inelastic particle scattering or other mechanisms. The time scale for excitation
and de-excitation is much shorter than stellar hydrodynamics time scales. Contrary to lab investigations where
decaying or reacting nuclei are in their ground state, these excited states will play an important role in stellar
decays or reactions. At thermal equilibrium the probability for populating a given state 

 

can be obtained as:
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The decay of 26Al represents a clear example of the role of excited states in the 
nuclear media. This nucleus is though to be produced In type II supernovae 
during the explosive carbon and neon burning phases. This nucleus decays to
the first excited state (1809 keV) in 26Mg. The observation of this gamma ray in
several -ray telescopes as COMPTEL aboard the Gamma Ray Observatory is
a major prove for nucleosynthesis processes in the Universe.

Since the first excited state in 26Al is an isomer decaying to the ground state in
26Mg, the observed intensities of 1809 keV -rays can only be transformed in 
nucleosynthesis rate of 26Al if one takes into consideration the populations of the 
different excited states in 26Al, and in particular the isomeric state.

g=2j+1 being j the spin of the state 
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1.2 Weak interactions
-decay:
In a hot plasma, excited states in a parent nucleus are thermally
populated and may also undergo -decay transitions to the
daughter nucleus. Even stable nuclei may undergo a b-decay in 
the stellar medium. The total -decay rate will be given by the 
weighted sum of the individual transition rates ij according to:

 
i j

ijiP 
* The sum over I and j runs over the parent and daughter 

states and Pi can be obtained from the previous equation.

Under these conditions, -decay becomes temperature dependent by also 
density dependent at sufficiently large values of density when the electron 
gas is degenerate, limiting the number of final states available for
the electron emission. 

Temperature dependence
of the decay rate of 26Al
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1.2 Weak interactions
Electron capture:
At the temperature typical of the stellar interior most nuclei posses few, if any, bound electrons. Being their
decay constant for bound electron capture very small. However, and due to the density of free electrons in
the stellar medium, nuclei can decay through the capture of free electrons. The probability for this process 
is proportional to the electron density and inversely proportional to the average electron velocity. 

At low densities, the kinetic energies of the free electrons are usually small. At very high densities, however, 
the (Fermi) energy of the degenerate electrons may become sufficiently large to cause nuclei to undergo
continuum capture of energetic electrons, even if they are stable in the laboratory.

Pair production:
At high temperatures pair production can become and effective process. Then positron capture should be 
considered in addition to the continuum electron capture.

Neutrino energy loss mechanism:
This mechanism known as Urca process becomes important at high temperatures and densities and consists
of alternate electron captures and --decays involving the same pair of parent and daughter nuclei being the net
result of two subsequent decays of a neutrino anti-neutrino pair.
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2.1 Particle induced reactions
In the stellar medium reactions are produced by collisions of two moving particles therefore the reaction rate 
(reactions per time and volume unit) will be determined by the number of colliding particles per volume unit, their 
relative velocity and their interaction cross section.
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In a stellar plasma at thermodynamic equilibrium the velocity of the constituent particles follows a given 
distribution. Then we can generalize the expression for the reaction rate taking into account the possibility
of having identical colliding particles as:
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Since nuclei in the plasma move non relativistically their relative velocities can be described by a Maxwell-
Boltzmann distribution, then:
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The reaction rate per mol is defined as::

With E given in MeV, T9 =T/109 in kelvin, , M in units of u and the cross section in barn.
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2.2 Photon induced reactions
If one of the colliding particles is a photon the reaction is called photodisintegration (+30+1). Considering that 
Photons move with the speed of light we can write the reaction rate and the corresponding decay constant as:
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The energy distribution of photons can be obtained from the Planck’s radiation law u(E).
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Then, the final expression for the decay rate will be:
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In general photodisintegration are endotermic reaction, then the
lower integration limit in the previous equation will be Q3 .
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2.3 Abundance evolution
The rate of change of the abundance of nucleus 0 due to reactions with nucleus 1 can be expressed as:
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The decay constant of a nucleus for destruction via particle-induced reactions depends explicitly on the stellar
density and implicitly on temperature. If a nucleus 0 can be destroyed by different reactions its total lifetime is:
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2.3 Abundance evolution
The final abundance of a nucleus can be obtained taking
into account all creation and destruction mechanisms 
(reactions, -decays, photodisintegrations,…)
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In a realistic situation we should consider the evolution of not just one nuclide, but of several species 
simultaneously. Such a system of coupled, nonlinear ordinary differential equations is called a nuclear
reaction network. Very often, equilibrium conditions together with the reciprocity theorem helps in solving
these nuclear reaction networks.
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2.4 Forward and reverse reactions
The cross sections of a forward and reverse reaction are related by the reciprocity theorem. If we consider
Reactions involving particles with rest mass 0+12+3 we obtain the following relation:
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For reactions involving photons, 0+1+3, we obtain these other expressions:
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2.4 Forward and reverse reactions
Since most of the capture reactions are not only exothermic, but their
Q values are relatively large, then the integration over the gamma
Energy will have as lower limit Q013 , this implies E>>kT and we may
use the following approximation:
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Then we can find an analytical relation relating capture and photodisintegration:
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For reactions involving particles and Q>0, the reverse reaction becomes important at
sufficiently large temperatures and at small Q-values.

In the case of reactions involving gammas, the capture process dominates in reactions
leading to even-even nuclei (larger Q-values). Then, the net effect of photodisintegration
In stellar plasmas at elevated temperatures is to convert nuclei to more stable species.
This result will be specially important for the advanced burning stages in massive stars. 
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2.5 Reaction rates at elevated temperature
At elevated temperatures, reacting nuclei will be thermally excited. For a given reaction 0+12+3 the rate 
Including thermally excited states is obtained by summing over all transitions to relevant excited states in nuclei
2 and 3, and averaging over excited states in nuclei 0 and 1. Considering 1 and 2 as light particles and neglecting
their excited states one obtains:
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2301/
0

.
2301

2301/
0

2301
*

2301 0

0









 

 


 vN
eg

vN

vN
eg

vNRvN AkTE

sg
A

AkTE

AttA 





















The relation between the forward and reverse stellar rate will be:
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2.5 Reaction rates at elevated temperature
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Summing over all final states we obtain:

where we have introduced the normalized partition function Gi with gi
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We can easily generalize this result by allowing excitations in nuclei 1 and 2 for reactions involving only
particles with rest mass as:
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and for reactions involving photons:
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2.6 Reaction rate equilibria
The net reaction rate considering forward and reverse reactions is obtained as:
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This last expression is known as the Saha statistical equation.
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2.6 Reaction rate equilibria
The equilibrium condition can be generalized to several nuclei produced by subsequent 
reactions or 

 

decays. Assuming that nuclei A and B are in equilibrium and photodisintegration
of C is negligible, the transformation of A into C by double capture or B’ by capture plus 

 

decay
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Numerically we find:
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2.7 Nuclear energy generation
The nuclear energy generation in stars is given by the Q value of the thermonuclear reactions taking place in the
stellar medium:
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At higher temperatures also the reverse process must be considered being the net energy production:
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3.1 Nonresonant reactions induced by charged particles
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Absorption cross section of charged particles are dominated by
the 1/k2=1/E dependence term and the transmission coefficient 
of the Coulomb barrier Tl

Astrophysical S-factor
In order to performed reliable extrapolations of the measured
cross sections at energies of astrophysical interest nuclear 
Astrophysics introduces the astrophysics S-factor removing the 1/E dependence of the absorption cross sections
And the s-wave Coulomb barrier probability.
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Nonresonant thermonuclear reactions

3.1 Nonresonant reactions induced by charged particles
With the definition of the S-factor we can write the nonresonant reaction rate as:
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The Gamow peak:
The major contribution to the reaction rate will come from energies where the 
product of the Maxwell-Boltzmann distribution and the Gamow factor is near its 
maximum. This product is known as the Gamow peak and represents the relatively 
narrow energy range over which most nuclear reactions occur in a stellar plasma.
The location of the maximum of the Gamow peak (E=E0 ) can be obtained from the 
derivative of the product of these two terms:
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Nonresonant thermonuclear reactions

3.1 Nonresonant reactions induced by charged particles
The shape of the Gamow peak can be approximated by a Gaussian distribution having the maximum at E=E0
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Where the 1/e width  of the Gaussian is obtained from the requirement that 
The second derivatives match at E0 . 
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Setting the last two expressions equal and solving for 
 

gives:
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Nonresonant thermonuclear reactions

3.1 Nonresonant reactions induced by charged particles
The nonresonant thermonuclear reaction rates can be calculated by replacing the Gamow peak with a Gaussian:
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The lower integration limit can be extended to minus infinity without introducing a significant error. In that case 
The value of the integral will be ½/2 then:
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One of the most striking features of thermonuclear reaction rates is their 
temperature dependence that near some energy T=T0 can be derived to be:
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Nonresonant thermonuclear reactions

3.2 Nonresonant reactions induced by neutrons
Neutrons that are produced in a star quickly thermalize and their velocities 
are given by Maxwell-Boltzmann distributions. Altough neutron induced 
reactions can lead to the emission of charged particles (e.g. n,p) in general 
these are exotermic reaction being the corresponding barrier transmission 
coefficients contants, then for s waves:
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Considering higher order partial waves the general expression for the reaction rates of reactions induced by
neutrons assuming low neutron energies compared to the neutron binding energy is:
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The integrand El+1/2e-E/kT represents the stellar energy window in which most
of the nonresonant neutron-induced reactions take place. The maximun of the
Integrand occurs at Emax =(l+1/2)kT
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Nonresonant thermonuclear reactions

3.2 Nonresonant reactions induced by photons
For nonresonant charged-particle emission reactions induced by photons the decay constant in terms of the
astrophysical S-factor is given by the expression:
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Again, the integrand in this equation represents the Gamow peak centered around. 3010   QEEeff

If we consider now reactions emitting neutrons with an energy smaller than the neutron binding energy we
obtain the following equation:
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Resonant thermonuclear reactions

4.1 Narrow-resonance reaction rates
Possible resonances is the reaction cross sections could have an important 
impact on the reaction rates. If we consider narrow resonances (

 

less than 
few keV). Isolated resonances can be described by the Breit-Wigner formula:

  4/)12)(12(
)1)(12(

4
)( 22

10

01
2









r

ba
BW EEjj

JE 



where ji are the spins of the target and projectile, J and E are the spin and 
energy of the resonance, i are the resonance partial widths of entrance and
exit channel and  is the total resonances width and. Emk 012/2/2 h 

The reaction rate for a single narrow resonance can then be obtained as:
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Resonant thermonuclear reactions

4.1 Narrow-resonance reaction rates
For a sufficiently narrow resonance, the Maxwell-Boltzmann factor e-E/kT and the partial widths  Gi are
approximately constant over the total width of the resonance, then:

   
 22

4/)(
2/22 /

2/3
01

2

0 22
/

2/3
01

2











   bakTE
A

r

bakTE
AA we

kTm
NdE

EE
we

kTm
NvN rr

hh

The area under the resonance can be obtained as:
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is referred to as the resonance strength. According to these results the reaction rates depend
Only on the energy and strength of the resonance, but not on the exact shape.

If several narrow and isolated resonances contribute to the cross section, then their contributions to the reaction
rate add incoherently. Numerically one finds:
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Resonant thermonuclear reactions

4.1 Narrow-resonance reaction rates
Narrow resonances in the range of effective stellar energies have a dramatic
effect on reaction rates. Therefore, it is important to locate all narrow resonances
that could contribute. 

Generally one can measure this resonances down to an energy Emin representing 
the smallest cross section reachable in the laboratory because of the strong 
reduction of the cross sections with energy due to the Coulomb barrier.

Then one can use indirect methods to characterize the region between E=0 and
E=Emin .One can uses other reactions X+x to populate astrophysically important
levels in the compound nucleus C. From the measured nuclear properties of the
Compound levels close to the particle threshold, the resonance energies and 
strengths of astrophysically relevant resonances can be estimated. 
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Resonant thermonuclear reactions

4.2 Broad-resonance reaction rates
When broad resonances are present the explicit energy dependence of the cross
section is important. Let’s consider the reaction 24Mg(p,)25Al with a broad 
resonance located at different energies: 

a) Er =0.1 MeV, =5 keV inside the Gamow peak. The energy dependence of the
Maxwell-Boltzmann distribution and the reaction cross sections must be 
considered. Then the reaction rates have to be calculated numerically:

where the exit channel b has to be calculated at the energy E23 =E01-23 -Ef

b) Er =0.25 MeV, =6 keV above the Gamow peak. This case had no influence in 
the reaction rate for narrow resonances. However, now the product of the 
Maxwell-Boltzmann distribution and the cross sections gives rise to another 
maximun at low energies caused by the low-energy wing of the resonance.

c) Shows a subthreshold resonance, corresponding to a compound nucleus 
level located below the proton threshold. In this case the high-energy wing of 
the resonance affects the reaction rate.
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General aspects on thermonuclear reactions

5.1 Electron screening
In the fully ionized stellar plasma, the Coulomb potential between two interacting nuclei will be screened by the
cloud of electrons surrounding them. The effective barrier for nuclear fusion reaction becomes thinner and, 
therefore, the tunneling probability and the reaction rate increase over their values obtained in vacuum. This effect
is known as electron screening. The screened potential for two colliding nuclei 0 and 1 is given by:
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The Debye-Huckel radius is a meadure of the size of the electron cloud. For most of the thermonuclear reactions
this radius is much larger than the average distance between neighboring nuclei.

Taking into consideration this screening effect we can calculate a modified barrier transmission coefficient.
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General aspects on thermonuclear reactions

5.1 Electron screening
Reaction rates can be calculated including the electron screening as:
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Although x and  depend on energy this expression can be approximated by evaluating the factor ex at the 
most effective energy of the interaction in the plasma which is the Gamow energy E0 .
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Consequently the screened reaction rate is simply obtained by multiplying the unscreened reaction rate by the
screening factor fs .
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It should be also consider screening due to electrons of the target in laboratory measurements of nuclear
reactions.
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General aspects on thermonuclear reactions

5.2 Total reaction rates
For the calculation of the total reaction rates, all processes contributing significantly to the reaction 
mechanism in the effective stellar energy range have to be taken into account.  
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Decays in and ractions in stellar plasma 

Exercise 1. 
Taking into account the decay scheme of 26Al into 26Mg, determine the sellar

 

half-life of 26Al 
when the plasma temperature amounts to T=2 GK. 

Exercise 2. 
Determine the fraction of photons contributing to the reaction 26Si(,p)25Al in a stellar medium
at temperature T=0.3 GK.

Exercise 3.
In a stellar plasma, the nucleus 25Al may be destroyed by the capture reaction 25Al(p,)26Si or by 
+

 

decay (T1/2

 

=7.18 s). Neglecting other processes, determine the dominant destruction process 
at a stellar temperature of T=0.3GK assuming a reaction rate of NA

 

(gv)=1.8 10-3

 

cm3mol-1s-1, a 
stellar density of =104

 

g/cm3

 

and a hydrogen mass fraction of XH

 

=0.7.

Exercise 4.
In a stellar plasma at 10 GK 32S can be destroyed by radiative

 

proton capture 32S(p,)33Cl with a 
reaction rate of 0.87 103 cm3mol-1s-1

 

(considering thermally excited states in 32S). Determine 
the stellar rate for the reverse reaction by using the following

 

partition functions G32S

 

=1.6, Gp

 

=1 
and G33Cl

 

=1.9.
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Decays in and ractions in stellar plasma 

Exercise 5.
In hydrogen burning enviroments

 

at high temperatures the proton 
capture in 21Mg produces 22Al and this one again 23Si. Considering that 
21Mg and 22Al are in equilibrium, determine if the nucleosynthesis
proceeds via 21Mg +

 

decay or via sequential two-proton capture to 23Si. 

Exercise 6.
One of the most important proceeses

 

in stellar mucleosynthesis

 

in the triple-

 

reaction 
producing 12C in two steps: +8Be and +8Be12C. Estimate the decay constant, 12C

 

in a 
stellar medium at T=0.3 GK and density =105 g/cm3, assuming a mass fraction of X=1 and 
NA

 

(v)+8Be12C

 

=1.17 10-2

 

cm3

 

mol –1

 

s-1.
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