

Tema 6

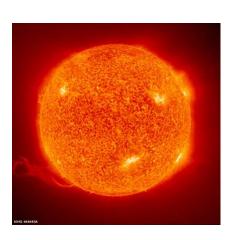
Nucleosíntesis estelar de núcleos ligeros (A<60)

Asignatura de Astrofísica Nuclear Curso académico 2009/2010

Universidad de Santiago de Compostela

Astrofísica Nuclear, Tema 6

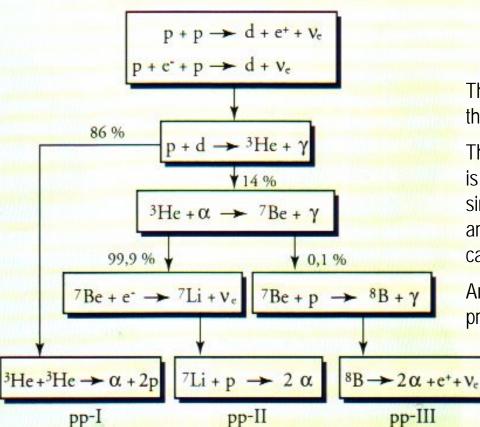
José Benlliure


1.1 Stellar scenario

Thermonuclear reactions supplies the power that is irradiated from the stellar surface and provide the necessary internal pressure that prevents stars from collapsing gravitationally.

Reactions involving the smallest Coulomb barrier will proceed most rapidly and will account for most of the energy generation. Consequently, we expect nuclear reactions involving hydrogen and helium to be the main energy sources in most stars.

Hydrogen burning releases far more energy per unit fuel consumed compared to any other reaction. Thus, a star will consume its hydrogen fuel much more slowly than other fuel in order to balance both gravity and the energy radiated from its surface. Thus, as many as about 90% of the stars we observe belong to the main sequence where hydrogen is burnt.

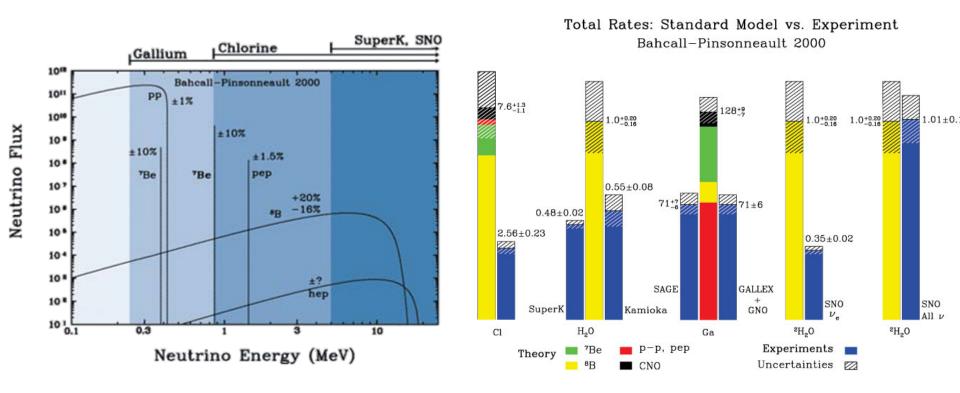

Hydrogen burning takes place in the core of main sequence stars at typical temperatures of T-8-55 MK or in the outer shells of AGB stars at temperatures of T=45-100 MK.

1.2 pp chains

The fusion of four ¹H nuclei to produce one ⁴He nucleus is called *hydrogen burning*. Independently on the particular thermonuclear reactions involved the process always releases two positrons, two neutrinos and 24.7 MeV in form of gamma ratiation.

$$4p \rightarrow ^{4}He + 2e^{+} + 2v_{e} + 24.7 \text{ MeV}$$

The transformation of 1H into 4He can proceed in stars through three different reaction chains, called pp-cycles.

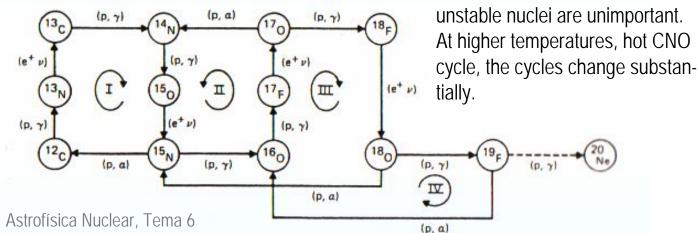

The first reaction leading to the production of deuterium is common to the three cycles. This is an special case since unlike almost all other stellar fusion reactions which are governed by the strong and Coulomb forces, in this case the weak force acts converting a proton into a neutron.

Another particularity of these reactions chains is neutrino production.

1.3 Solar neutrino puzzle

Reactions involved in the pp-cycle produced electron-neutrinos with different energy ranges. Until recently The neutrino fluxes detected on Earth experiments did not agree with the Solar model stimates.

Few years ago, the SNO experiment in Canada provided an answer to the solar neutrino puzzle, neutrino oscillation explains the deficit of solar neutrinos observed on Earth.



1.4 CNO cycles

Most of the stars do not only contain hydrogen and helium but also some small concentrations of heavier Nuclei like C, N, O and F. We know these heavier nuclei also participate in the hydrogen burning process as catalysts. We identify four reactions chains where hydrogen is converted into helium under the presence of C, N or O. These reaction chains are known as CNO cycles. The result of these cycles is exactly the same as the one obtain for the pp cycles: $4p \rightarrow {}^4He + 2e^+ + 2v_e + 24.7 \text{ MeV}$

In these cycles C,N, O and F nuclei act only as catalysts, in the sense that the total abundance of the heavy nuclei is not altered while only hydrogen is consumed. The energy generation rate depends on the abundance of the catalysts nuclei and the time it takes to complete the cycle.

At low stellar temperatures (T<55 MK) b+ decays of unstable nuclei in the CNO mass range proceed much faster than proton capture. Thus, reactions involving

CNO1 cycle

$$^{12}C + p \rightarrow ^{13}N + \gamma$$

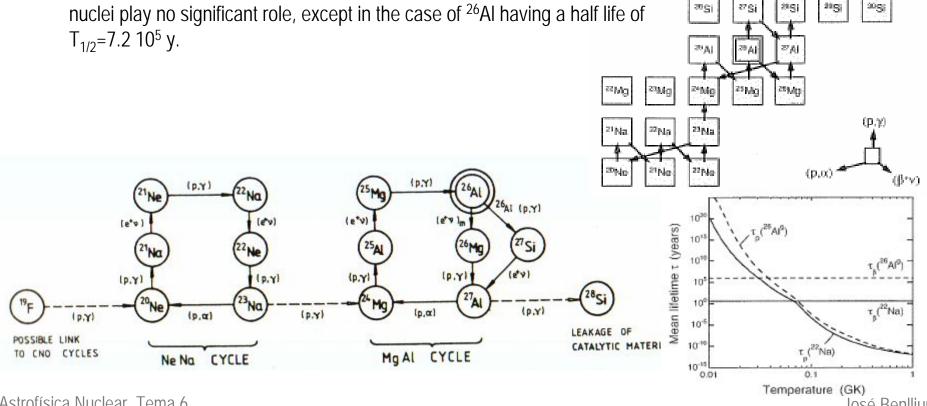
$$^{13}N \rightarrow ^{13}C + e^{+} + v_{e}$$

$$^{13}C + p \rightarrow ^{14}N + \gamma$$

$$^{14}N + p \rightarrow ^{16}O + \gamma$$

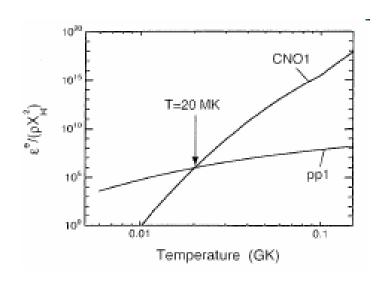
$$^{15}O \rightarrow ^{15}N + e^{+} + v_{e}$$

$$^{15}N + p \rightarrow ^{12}C + ^{4}He$$

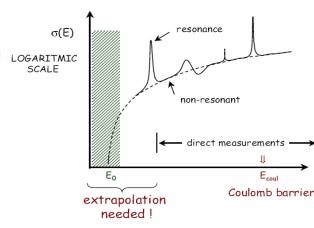

José Benlliure

1.5 Hydrostatic hydrogen burning beyond the CNO mass region

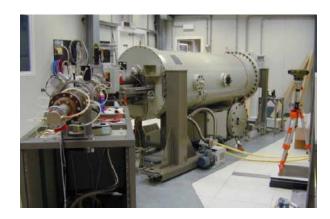
Nuclei heavier than F can also contribute to the hydrostatic hydrogen burning. However, the fact that the reaction rate for $^{19}F(p,\gamma)^{20}Ne$ is orders of magnitude smaller compared to the competing $^{19}F(p,\alpha)^{16}O$ reaction requires pre-existing seed nuclei with masses A>20.


As in the previous cycles, protons proton-induced reactions involving unstable nuclei play no significant role, except in the case of ²⁶Al having a half life of

1.5 Hydrostatic hydrogen burning beyond the CNO mass region


If a significant fraction of CNO nuclei is present in the stellar gas, then the CNO cycles will generate most Of the energy above a certain value of the temperature.

1.6 Experimental investigation of key reactions


The Gamow window for the pp and CNO cycles in hidrostatic equilibrium correspond to CM energies below 200 keV. In this energy range cross sections are very small and the experimental investigation is limited by statistics: very long experiments with low background conditions.

LUNA experiment at Gran Sasso Underground laboratory

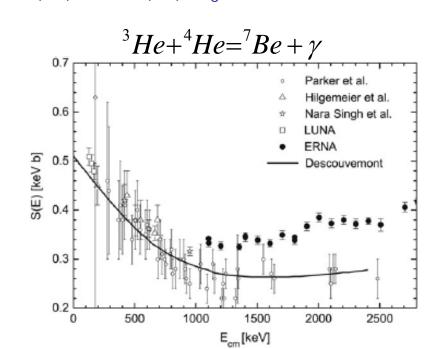
LUNA2 Van der Graaf accelerator

Astrofísica Nuclear, Tema 6

José Benlliure

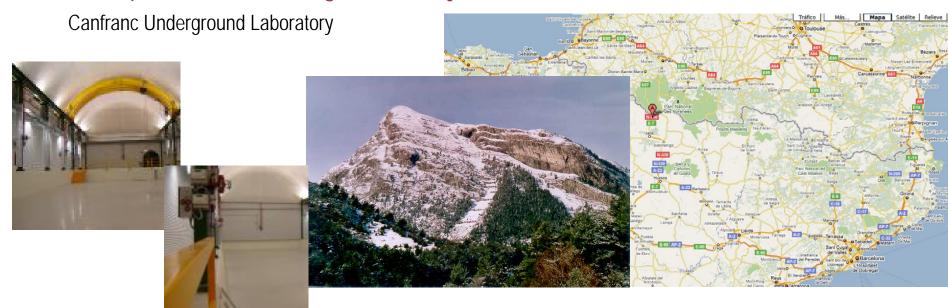
1.6 Experimental investigation of key reactions

Experimental program at LUNA, Gran Sasso


- LUNA1 (1991, 50 kV) cp-p cycle: 3 He(3 He,2p) 4 He, 2 H(p, γ) 3 He and 3 He(α , γ) 7 Be
- LUNA2 (2000, 400 kV) CNO cycle: $^{14}N(p,\gamma)^{15}O$
- LUNA2 (2006, 400 kV) proposed measurements: 25 Mg(p, γ) 26 AI, 15 N(p, γ) 16 O, 2 H(α , γ) 6 Li, 17 O(p, γ) 18 F, 18 O(p, γ) 19 F, 22 Ne(p, γ) 23 Na, 23 Na(p, γ) 24 Mg
- -LUNA3 (????, 3MV) proposed experiments: $^{12}C(\alpha,\gamma)^{16}O$, $^{13}C(\alpha,n)^{16}O$, $^{22}Ne(\alpha,n)^{25}Mg$

Other initiatives in Europe:

- Canfranc Undergrund Laboratory, Spain
- Boulby, UK
- Slanic-Prahova, Romania


Initiatives in USA

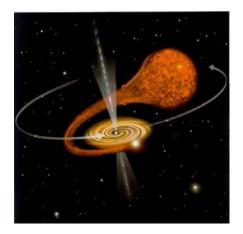
- DUSEL, experiment

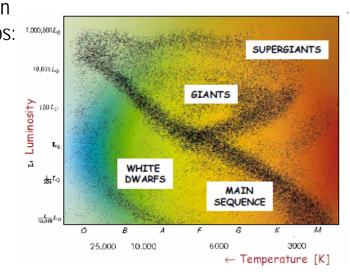
1.6 Experimental investigation of key reactions

Experimental program:

- dark matter search
- double beta decay
- nucler astrophysics

2.1 Stellar scenario

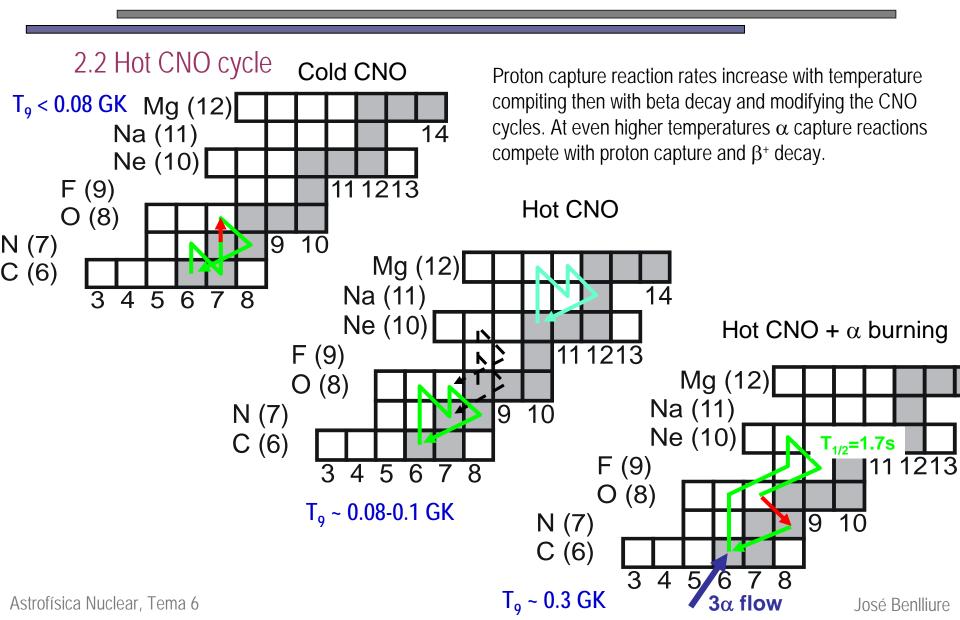

Hot hydrogen burning takes place at stellar temperatures between 0.1 and 0.4 GK. Those temperatures are reached in two scenarios:


✓ massive Aymptotic Giant Branch (AGB) stars (M>4M_O)

✓ Novae phenomenon binary system made of:

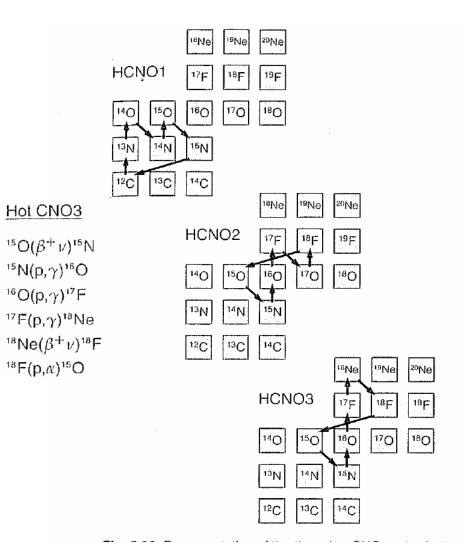
white dwarf (dead star mainky CO or ONe)

Red giant
H-shell burning and He burning



The main differences between hidrostatic and hot burning are:

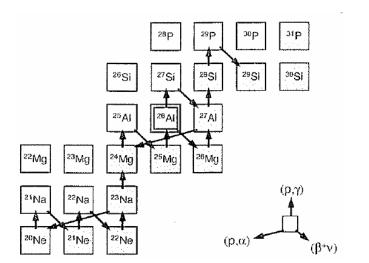
- radioactive nuclei can induce proton-capture reactions.
- temperatures and densities in an explosive event change dramatically with time.

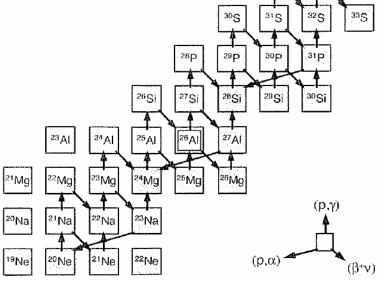


2.2 Hot CNO cycle

One can identify three hot CNO cycles

Hot CNO1	Hot CNO2
$^{12}C(p,\gamma)^{13}N$	¹⁵ O(β+ν) ¹⁵ N
13 N(p, γ) 14 O 14 O($\beta^+\nu$) 14 N	16 N(p, γ) 16 O
$^{14}N(p,\gamma)^{15}O$	$^{17}F(\beta^{+}\nu)^{17}O$
$^{15}O(\beta^{+}\nu)^{15}N$	$^{17}\text{O}(\text{p},\gamma)^{18}\text{F}$
¹⁵ N(p,α) ¹² C	¹⁸ F(p,α) ¹⁵ O

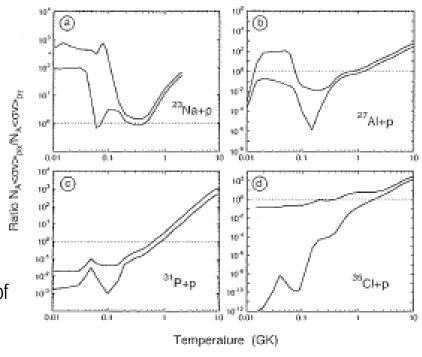


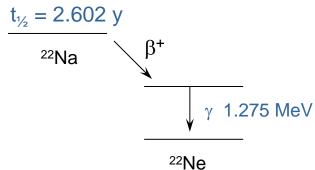

34CI

Hot hydrogen burning

2.3 Hot hydrogen burning beyond the CNO mass region

In the temperature range for hot hydrogen burning (T=0.1-0.4 GK) there is almost no leakage of material from the CNO region to the A>20. Then, hot hydrogen burning can only takes place in massive AGB stars or novae with pre-existing A>20 nuclei. Again the proton capture will compete with β^+ decays.

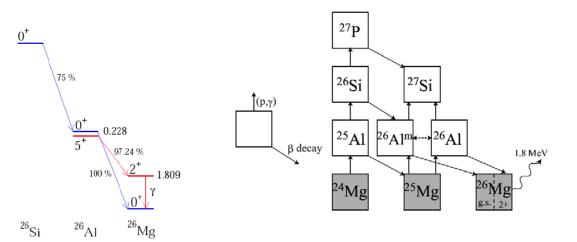

Novae systems with heavier white dwarfs made mainly of O and Ne are good candicates for hot hydrogen processes beyond the CNO mass region. The exact path for nucleosynthesis is very much temperature dependent. In Novae models achieving peak temperatures at 0.25 GK, β^+ decays of 23 Mg, 25 Al and 27 Si are faster than proton-capture reactions and, therefore, nucleosynthesis runs close to the line of stable nuclei.



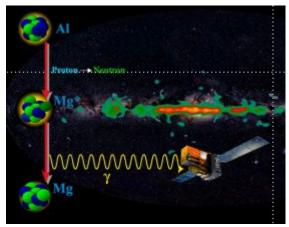
2.4 Experimental investigation

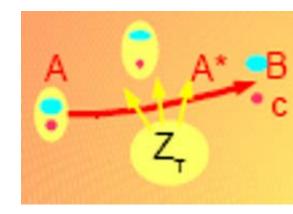
With one exception, none of the reactions involving Unstable target nuclei in the A=20-40 range have been measured directly. Their reaction rates are estimated indirectly from nuclear structure information. Hence, rate errors for reactions such us 23 Mg(p, γ) 24 Al, 25 Al(p, γ) 26 Si and 27 Si(p, γ) 28 P may amount to an order of magnitude or more.

The exception is the 21 Na(p, γ) 22 Mg reaction which influences the production of 22 Na in novae. The decay of 22 Na(T1/2=2.6 y) produced γ -rays with an energy of 1275 keV. This g-rays may be observed with detectors onboard satellites and be used for investigating classical Novae phenomenon.



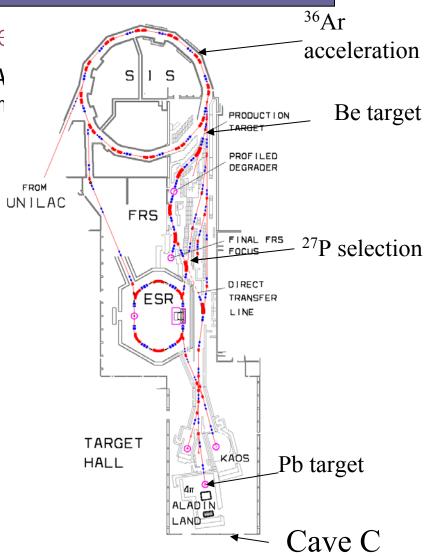
2.4 Experimental investigation: example


²⁶Si(p,γ)²⁷P and the production of ²⁶Al


This reaction hinderes the production of ²⁶Al but it is difficult to investigate because the two nuclei

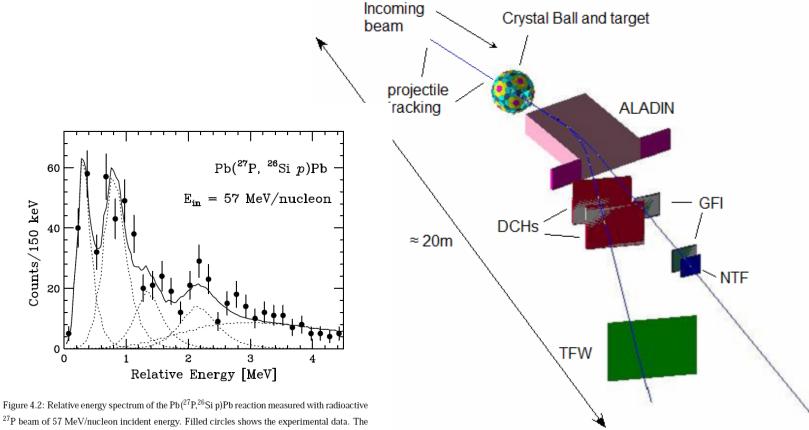
involved are unsstable.

One can uses indirect methods as the reverse Coulomb dissociation reaction $^{27}P(\gamma,p)^{26}Si$, but still ^{27}P must be produced in a previous reaction.



2.4 Experimental investigation: €

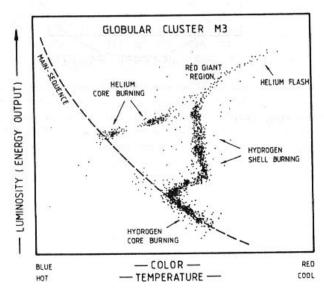
 26 Si(p, γ) 27 P and the production of 26 A The experiment was performed at GSI Darm



2.4 Experimental investigation: example

26 Si(p, γ) 27 P and the production of 26 Al

Experimental setup

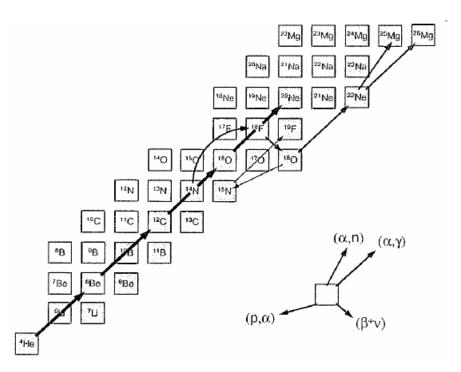

Prigure 4.2: Relative energy spectrum of the Pb(**P,**Si p)Pb reaction measured with radioactive 27P beam of 57 MeV/nucleon incident energy. Filled circles shows the experimental data. The solid curve represents the best fit by the five components shown individually by the dotted curves which represent four excited states and a direct capture component.



3.1 Stellar scenario

When a star exhausts the supply of hydrogen by nuclear fusion processes in its core, the core contracts and its temperature increases, causing the outer layers of the star to expand and cool. The star's luminosity increases greatly, and it becomes a red giant, following a track leading into the upper-right hand corner of the HR diagram.

Eventually, once the temperature in the core has reached approximately 0.1–0.4 GK, and density is of the order of 10²-10⁵ g/cm⁻³, helium burning begins. The onset of helium burning in the core halts the star's cooling and increase in luminosity, and the star instead moves back towards the left hand side of the HR diagram. This is the horizontal branch



3.2 Helium-burning reactions

The helium burning process leading to the production of 12 C and 16 O has not been understood for some time. The fact that no stable nucleides with mass numbers A=5 and A=8 exist represented at major hurdle in this regard. Both, the simultaneus and sequential triple- α fusion could not explain the observed 12 C and 16 O abundances until Hoyle proposed (1954) that the 8 B(α , γ) 12 C reaction proceeded via an s-wave resonance.

$${}^{4}He+{}^{4}He \rightarrow {}^{8}Be \ (Q = -0.091 \, MeV)$$

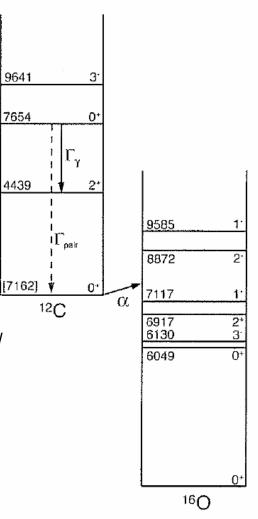
 ${}^{4}He+{}^{8}Be \rightarrow {}^{12}C \ (Q = 7.37 \, MeV)$

$${}^{4}He+{}^{12}C \rightarrow {}^{16}O + \gamma$$

$${}^{4}He+{}^{16}O \rightarrow {}^{20}Ne + \gamma$$

$${}^{4}He+{}^{20}Ne \rightarrow {}^{24}Mg + \gamma$$

$3.3 3\alpha$ reaction


According to Hoyle's prediction, the overall conversion of three α -particles into one ¹²C nucleus during helium burning would be too slow unless the second step proceeds via an s-wave resonance (J π =0+).

1+). E'=379 keV [7367] 0+ α 8Be

3030

The three α reaction bypasses the stable nuclei in the mass A=6-11 region. Therefore, these nuclei are not synthetized in stars through thermonuclear Reactions. Their extremely low observed abundances are the result of othe Processes, such as the Big Bang nucleosynthesis or cosmic-ray spallation.

The 3α reaction has a remarkable temperature dependence. Therefore, energy generatio via the 3α reaction in a helium-burning star occurs predominantly in the regions of highest temperature. Furthermore, if the helium gas is electron degenerate, then a small rise in the temperature will cause a large release of energy. As a result, the temperature rises fater, producing even more energy. The cycle continues until the degeneracy is lifted in a thermonuclear explosion called *helium flash*.

3.4 Other helium-burning reactions

The fact that the ratio of abundances of ¹²C and ¹⁶O in the Universe amounts to N(¹²C)/N(¹⁶O)~0.4 Suggests that the 12 C(α,γ) 16 O reaction is rather slow and that, as a result, some 12 C remains after helium is exhausted. Therefore, the precise magnitude of the reaction $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ will have a strong Influence on the relative production of ¹²C and ¹⁶O but also on the production of many other elements up to iron and even in the evolution of massive stars that explode as supernovae.

Similarly, the reaction ${}^{16}O(\alpha,\gamma){}^{20}Ne$ must also be rather slow. Indeed, the production of ²⁰Ne and ²⁴Mg is very small, with final mass fractions of the order of 10⁻⁶ and 10⁻¹⁴, repectively.

Other helium-burning reactions are due to the presence of ¹⁴N as a result of the

CNO-cycle operation leading to the reactions:

$$^{14}N(\alpha,\gamma)^{18}F(\beta^+\nu)^{18}O(\alpha,\gamma)^{22}Ne$$

Then, ²²Ne will be converted in ²⁵Mg and ²⁶Mg by the reactions:

$$^{22}Ne(\alpha, \gamma)^{26}Mg$$
 (Q = 10.62 MeV)
 $^{22}Ne(\alpha, n)^{25}Mg$ (Q = -0.48 MeV)

The latter reaction provides at T>0.25 GK an important source of neutrons that influence sesitively the Synthesis of neutron-rich nuclei in the mass A=60-90 range. Astrofísica Nuclear, Tema 6

5.1 Stellar scenario

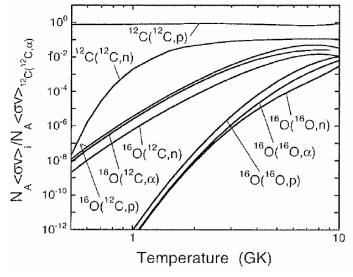
Stars with initial masses exceeding $\sim 11~M_{\odot}$ are capable of igniting successive burning stages in their cores using the ashes of the previous core burning stage as a fuel. Three distinct burning stages follow carbon burning, neon, oxygen and silicon burning. During hydrogen and helium burning, nuclear energy is almost exclusively converted to light. During the advanced burning stages energy is almost enterely radiated as neutrino-anti-neutrino pairs.

After the silicon has been exhausted in the core, the star become an onion-like structure with several layers of different composition separated by thin nuclear burning shells, with the heavier and most stable

nuclei in the core composed by electron-degenerate matter.

When the mass of the core exceeds the Chandrasekhar limit (\sim 1.4M $_{\rm O}$), the electron degeneracy preassure is unable to counteract gravity, and the core collapses photodisintegrating the iron peak nuclei into lighter and less stable elements. When the density reaches values of the order of the nuclear density (\sim 10¹⁴ g/cm 3), nuclei and nucleons feel the short range nuclear force. Then, the nuclear potential will store energy until it rebounds giving rise to an outward moving shock wave while the very hot and dense inner core becomes a proto-neutron star with a mass of around 1.5 M $_{\rm O}$.

H He C Ne O Si Fo



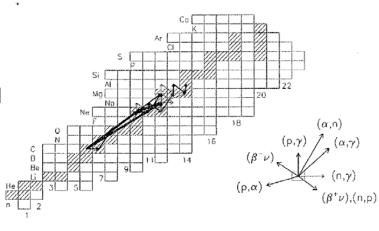
5.2 Carbon burning

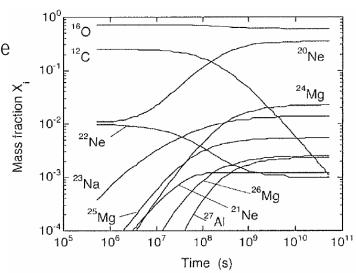
Massive stars (8M_O<M) become red giants during a not degenerate helium burning phase producing an electron-degenerate carbon-oxygen core. Eventually the temperature of the core becomes sufficient for carbon burning, entering the star a *super giant phase* when hydrogen in the outer layers stars burning. Once carbon is exhausted the stellar core is composed mainly by oxygen and neon. If the mass of the star is M<11M_O then it will die as an *oxygen-neon white dwarf*, otherwise the star will continue burning heavier nuclei.

The fusion of two ¹²C nuclei leads to a highly excited ²⁴Mg (E*>14 MeV). This energy excess is most effectively removed by emission of light particles, being the most important reaction channels:

$$^{12}C(^{12}C, p)^{23}Na$$
 (Q = 2241 keV)
 $^{12}C(^{12}C, \alpha)^{20}Ne$ (Q = 4617 keV)
 $^{12}C(^{12}C, n)^{23}Mg$ (Q = -2599 keV)

The produced protons, a-particles and neutrons will be quickly consumed at elevated temperatures by initiating Secondary reactions involving the ashes of helium burning (12C and 16O) and the heavy products of the primary Reactions (23Na and 20Ne.) This network of primary and secondary reactions is known as carbon burning. typical temperatures in core carbon burning amount to T=0.6-1.0 GK and T=1.8-2.5 GK in explosibe burning.


5.2 Carbon burning


The main nuclei involved in the carbon burning and their abundance evolution is shown in the figures. The dominant abundace flows are due to the primary reactions $^{12}C(^{12}C,p)^{23}Na$ and $^{12}C(^{12}C,\alpha)^{20}Ne$ and the reactions induced by the liberated protons and a-particles $^{23}Na(p,\alpha)^{20}Ne$ and $^{16}O(\alpha,\gamma)^{20}Ne$.

Weaker but substantial flows are due to the (p,γ) reactions on 21 Ne, 22 Ne, 23 Na, 25 Mg and 26 Mg, the (α,γ) reaction on 20 Ne, the (α,n) reactions on 13 C, 21 Ne, and 22 Ne, the (n,p) reaction on 22 Na and the β^+ -decay of 26 Alm.

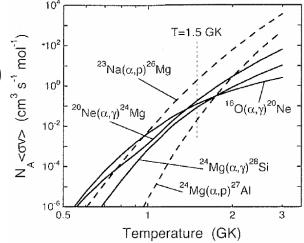
 (α,n) reactions are of particular interest because they constitute the possible neutron sources playing an important role in the nucleosynthesis above A>60.

T=0.9 GK, ρ =10⁵ g/cm³, t=5.2×10¹⁰ s

5.3 Neon burning

At the end of the carbon burning, the stellar core consists mainly of 16 O, 20 Ne, 23 Na and 24 Mg. When most of the 12 C is consumed, the core contracts gravitationally and temperature and density increase until new reactions ignite. Contrary to expectation, the next nuclear fuel to ignite is not oxygen via the 16 O+ 16 O fusion reaction, but neon burning in α -particle induced reactions. The reason is that after carbon burning the core temperatures Are high enough (T > 1GK) to initiate photodisintegration reactions, particularly of 20 Ne because this is the component of the stellar core with the lowest α -particle separation energy. The liberated α -particles, in turn, induce secondary reactions involving any of the more abundant nuclei.

Primary reaction:


 20 Ne(γ , α) 16 O (Q=-4730 keV)

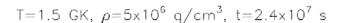
Secondary reactions:

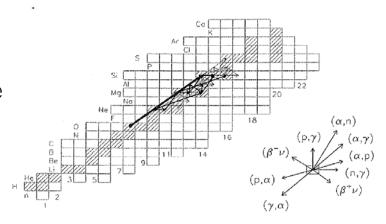
 20 Ne(α , γ) 24 Mg(α , γ) 28 Si (Q=19300 keV)

 23 Na(α ,p) 26 Mg(α ,n) 29 Si (Q=1855 keV)

Although the primary reaction is endothermic, the combination with the subsequent secondary reactions leads to a net production of energy as a consequence of the photodisintegration of ²⁰Ne.

Typical temperatures during core neon burning are in the range T=1.2-1.8 GK and in explosive burning stages in the range T=2.5-3.0 GK.

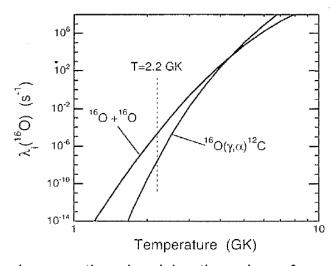



5.3 Neon burning

The main nuclei involved in the neon burning and their abundance evolution is shown in the figures. The dominant abundace flows are due to the reactions $^{20}\text{Ne}(\gamma,\alpha)^{16}\text{O}$ and $^{20}\text{Ne}(\alpha,\gamma)^{24}\text{Mg}(\alpha,\gamma)^{28}\text{Si}$. Smaller but substantial flows are caused by $^{24}\text{Mg}(\alpha,p)^{27}\text{Al}(\alpha,p)^{30}\text{Si}$ and $^{23}\text{Na}(\alpha,p)^{26}\text{Mg}$.

The released protons initiate a number of (p,γ) reactions on 26 Mg, 23 Na and 25 Mg. Neutrons are also produced in (α,n) reactions on 21 Ne, 25 Mg and 26 Mg.

The 20Ne fuel is exhausted after 280 d being the most abundant nuclei produce in this process ¹⁶O, ²⁴Mg and ²⁸Si.



5.4 Oxygen burning

After the neon fuel has been consumed, the most abundant nuclei in the stellar core are 16 O, 24 Mg and 28 Si. If the mass of the star is M>15M_O (super red-giant) the core contracts gravitationally, temperature and density increase and oxygen burning via 16 O+ 16 O fusion reactions start. Also in this case, the 32 S nuclei produced in the fusion reactions are highly excited and they de-excite by emitting several particles and defining the oxygen burning process

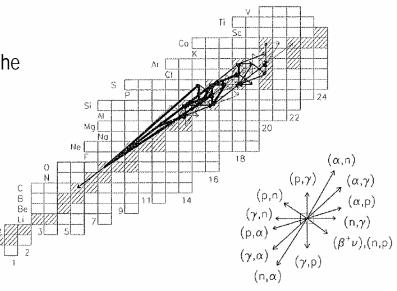
$^{16}O(^{16}O,p)^{31}P$	(Q=7678 keV)
¹⁶ O(¹⁶ O,2p) ³⁰ Si	(Q=381 keV)
$^{16}\text{O}(^{16}\text{O},\alpha)^{28}\text{Si}$	(Q=9594 keV)
$^{16}\text{O}(^{16}\text{O},2\alpha)^{24}\text{Mg}$	(Q=-390 keV)
$^{16}O(^{16}O,d)^{30}P$	(Q=-2409 keV)
$^{16}O(^{16}O,n)^{31}S$	(Q=1499 keV)

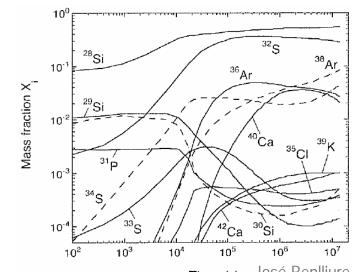
The liberated light particles are quickly consumed by secondary reactions involving the ashes of neon burning or heavy nuclei produced in the fusion of ¹⁶O+¹⁶O. Typical temperatures during core oxygen burning are in the range T=1.5-2.7 GK. In explosive oxygen burning, temperatures of T=3-4 GK are reached.

5.4 Oxygen burning

Many different nuclear processes occur during oxygen burning. The largest net abundance flows correspond to the primary ¹⁶O+¹⁶O reaction producing ²⁸Si and ³²S via the following reactions:

 $^{16}O(^{16}O,p)^{31}P(p,\gamma)^{32}S$

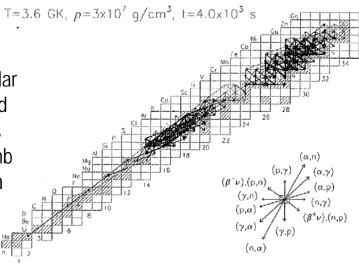

 $^{16}O(^{16}O,p)^{31}P(p,\alpha)^{28}Si$

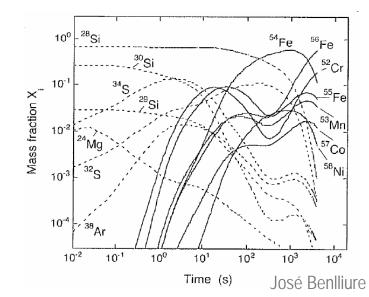

 $^{16}O(^{16}O,\alpha)^{28}Si$

 $^{16}O(^{16}O,n)^{31}S(\gamma,p)^{30}P(\gamma,p)^{29}Si(\alpha,n)^{32}S$

Then, some of the ²⁸Si nuclei are converted to ³²S via ²⁸Si(α , γ)³²S. A fraction of the ³²S in either transformed back to ³¹P via ³²S(n, γ)³³Sn(n, α)³⁰Si(p, γ)³¹P or is converted to heavier nuclei via ³²S(α ,p)³⁵Cl(p, γ)³⁶Ar.

 16 O, 24,25,26 Mg and 27 Al nuclei are quickly depleted with progressing time. The 16 O fuel is exhausted after about 162 days. The most abundant nuclei at the end are: 28 Si (X_f=0.54), 32 S(X_f=0.28), 38 Ar(X_f=0.084), 34 S(X_f=0.044), 36 Ar(X_f=0.027) and 40 Ca(X_f=0.021).





5.5 Silicon burning

Near the conclusion of core oxygen burning, when the ¹⁶O fuel is depleted, the most abundant nuclei are ²⁸Si and ³²S. If the stellar mass in M>M_O (pre-supernova star) the stellar core contracts and the temperature and density increases. Fusion reactions such as ²⁸Si+²⁸Si or ²⁸Si+³²S are too unlikely to occur because of Coulomb barrier considerations. Instead, the nucleosynthesis proceeds via photodisintegrations of less tightly bound nuclei and the capture of the liberated light particles to create gradually heavier and more tightly bound nuclei.

Temperatures during core silicon burning are in the range of T=2.8-4.1 GK, depending on the stellar mass. Explosive silicon burning takes place in the range of 4-5 GK.

Stelar nucleosynthesis of light nuclei (A<60)

Exercise 1.

Determine the average time to observe a single $p(p,e^+v)$ d reaction in an experiment using a proton accelerator with an intensity of 1 A and an energy of 1 MeV, and a hydrogen target with a density of 10^{20} protons/cm². For the cross section consider that the corresponding S-factor is described by the following expression.

$$S(E) = 3.94 \cdot 10^{-25} + 4.61 \cdot 10^{-24} E + 2.96 \cdot 10^{-23} E^{2}$$

Exercise 2. Calculate