

Tema 8

Excitaciones colectivas

Asignatura de Física Nuclear Curso académico 2012/2013

Universidad de Santiago de Compostela

Las excitaciones colectivas

→ En determinadas ocasiones a los núcleos les cuesta menos energía excitar varios nucleones. Un claro ejemplo son los núcleos par-par en los que el primer estado excitado corresponde a la excitación de dos nucleones

→ Generalmente estas excitaciones colectivas dan lugar al movimiento coherente de varios nucleones dentro del núcleo que se manifiestan como un movimiento macroscópico del núcleo.

→ El número de nucleones participantes y la amplitud de sus movimientos permiten clasificar a las excitaciones colectivas en vibraciones, resonancias o movimientos de gran amplitud como la fisión.

→ El estudio de los movimientos colectivos nucleares constituyen otra aproximación para estudiar las interacciones a n-cuerpos y la fuerza nuclear

Las excitaciones colectivas

En principio los conceptos de excitación individual y colectiva son contrapuestos:

- ✓ Excitaciones individuales → λ >R, el recorrido libre medio de los nucleones es superior al radio nuclear
- ✓ Excitaciones colectivas → λ <R, el recorrido libre medio de los nucleones es inferior al radio nuclear

Estas dos imágenes pueden reconciliarse recurriendo a la aproximación adiabática:

- ✓ Estos dos tipos de excitaciones tienen tiempos característicos muy diferentes (las excitaciones individuales son rápidas y las colectivas lentas) por lo que pueden describirse de forma independiente
- ✓ Esta descripción es análoga a la física atómica donde las moléculas diatómicas presentan excitaciones eléctricas (eV), vibraciones (10⁻¹ eV) y rotaciones 10⁻³ eV) que se describen separadamente

Indice

- 1. Evidencias experimentales de las excitaciones colectivas
- 2 Vibraciones
- 2.1 Vibraciones superficiales en núcleos esféricos
- 3 Resonancias gigantes
- 3.1 Características de las resonancias gigantes
- 3.2 La resonancia dipolar gigante
- 3.3 La resonancia monopolar gigante
- 4 Rotación nuclear
- 4.1 Movimiento de rotación
- 4.2 Momento de inercia nuclear: modelo de ``crancking"
- 4.3 Modelo rotor+partículas: fenómeno de ``backbending"
- 4.4 Superdeformación
- 4.5 Producción y estudio de núcleos con gran momento angular
- 5 Fisión nuclear
- 5.1 Modelo de la gota líquida para núcleos deformados: barrera de fisión
- 5.2 Caracterización de la fisión

Bibliografía

- Bohr y B.R. Mottelson Nuclear Structure
- M.A Preston Structure of the nucleus
- L. Valentin Noyaux et particules
- C.A. Bertulani y P. Danielewicz Introduction to Nuclear Reactions
- S.G. Nilsson, Shapes and Shells in Nuclear Structure
- N.A. Jelley, Fundamentals of nuclear physics

Evidencias experimentales de las excitaciones colectivas

Núcleos par-par

Cociente de energías entre el segundo y el primer estado excitado 4+/2+

- La energía del primer estado excitado disminuye con A (excepto en las capas cerradas)
- Se observa un comportamiento especial para150<A<190 con valores de $E(2^+)$ pequeños y cte.

- Se observan dos regiones A<150 (E(4+)/E(2+) ~ 2) y 150>A (E(4+)/E(2+) ~ 3.3) (excepto en las capas cerradas).
- → estos dos comportamientos se asocian a dos tipos de excitaciones colectivas diferentes

Evidencias experimentales de las excitaciones colectivas

Núcleos par-par

Momento cuadrupolar eléctrico de los primeros estados excitados 2+

También se distinguen dos regiones → A<150 con Q nulo → 150<A<190 y A>230 con Q no nulo

Valores de Q no nulos \rightarrow deformación

Las excitaciones asociadas a A<150 (núcleos esféricos) \rightarrow vibraciones \rightarrow único movimiento colectivo que mantiene la simetría radial

Las excitaciones asociadas a A>150 (núcleos deformados) \rightarrow rotaciones

Existe un tercer tipo de excitación colectiva que es la fisión nuclear

Vibraciones: evidencias experimentales

Vibración→excitaciones colectiva compatible con la simetría esférica

Candidatos a manifestar vibraciones \rightarrow núcleos par-par cerca del cierre de capas donde

- primer estado excitado 2+
- segundo grupo de estados excitados 0+,2+,4+ y a una energía doble del primer 2+
- tercer grupo con un nivel 6⁺ y a triple energía que el primer 2⁺

Física Nuclear, Tema 8

José Benlliure

Vibraciones: evidencias experimentales

Otras características observadas en núcleos par-par cerca del cierre de capas

- presencia de un estado $3^{-} \rightarrow$ origen colectivo
- transición de tipo E3 con una fuerza asociada muy grande

Máxima en la capa cerrada

→Movimiento vibratorio de los nucleones muy cerca de la superficie.

Descripción de una superficie oscilante

PARAMETRIZACION VIBRACIONES DE SUPERFICIE

Superficie esférica que instantáneamente fluctúa alrededor de la superficie esférica

$$R(t) = R_0 \left[1 + \sum_{\lambda,\mu} \alpha_{\lambda\mu}(t) Y_{\lambda}^{\mu}(\vartheta,\varphi) \right]$$

 $\alpha_{\lambda,\mu}(t)$ son functiones sinusoidales del tiempo.

Como en el caso de la deformación consideramos simetría especular $\alpha_{\lambda,\mu} = \alpha_{\lambda,-\mu}$ y si tenemos simetría axial: $\alpha_{2,-2} = \alpha_{2,2}$ $\alpha_{2,1} = \alpha_{2,-1} = 0$

 λ da el orden multipolar del desarrollo

Descripción de una superficie oscilante

 $\lambda=0$ simetría esférica, oscilaciones alrededor de la posición de equilibrio, E>10MeV

$$R = R_0 \big[1 + a_0 \cos wt \big]$$

 λ =1 modo dipolar. Para μ =0

$$R = R_0 \left[1 + (a_0 \cos wt) \cos w\theta \right]$$

 λ =2 modo cuadrupolar. Baja energía

$$R = R_0 \left[1 + (a_0 \cos wt) (3\cos^2 \theta - 1) \right]$$

 λ =3 modo octupolar. Baja energía

Energía del movimiento vibratorio

Para calcular la energía asociada a un movimiento vibratorio de la superficie nuclear podemos recurrir a la analogía del movimiento vibratorio de una gota líquida. Este problema fue resuelto por Lord Rayleigh en 1877 para un fluido incompresible e irrotacional llegando a las siguientes expresiones para la energía cinética y potencial del sistema:

$$T = \frac{1}{2} \sum_{\lambda,\mu} B_{\lambda} \left| \dot{\alpha}_{\lambda,\mu}(t) \right|^2$$

$$B_{\lambda} = \frac{\rho R_o^2}{\lambda}$$

siendo ρ y R_o la densidad y el radio de la gota

$$V = \frac{1}{2} \sum_{\lambda,\mu} C_{\lambda} \left| \alpha_{\lambda,\mu} \right|^2 \qquad C_{\lambda} = SR_o^2 (\lambda - 1)(\lambda + 2) - \frac{3}{2\pi} \frac{Z^2 e^2}{R_o} \frac{\lambda - 1}{2\lambda + 1}$$

En C_{λ} se ha sustraido la energía Coulombiana de los protones. El factor *S* representa la tensión superficial que puede calcularse usando una fórmula de masas.

$$4\pi R_o^2 S = a_s A^{2/3} \text{ MeV}$$

Bandas vibracionales

Para adaptar este problema al movimiento vibratorio de un núcleo hay que plantear el hamiltoniano correspondiente a partir de las ecuaciones anteriores:

$$H = T + V = \sum_{\lambda,\mu} \left(\frac{1}{2B_{\lambda}} p_{\lambda\mu}^{2} + \frac{1}{2} C_{\lambda} \alpha_{\lambda\mu}^{2} \right) \qquad p_{\lambda\mu}^{2} = B_{\lambda} \dot{\alpha}_{\lambda,\mu}$$

El hamiltoniano resultante es una suma de osciladores con frecuencia:

$$\boldsymbol{\varpi}_{\lambda} = \sqrt{\frac{\boldsymbol{C}_{\lambda}}{\boldsymbol{B}_{\lambda}}}$$

Por analogía a la teoría cuántica del electromagnetismo a cada cuanto de vibración le llamaremos fonón con energía $E=h\omega$ (bosón) y espín (momento angular total) λh

La energía de un estado construido por fonones cuadrupolares (λ =2) tendrá un valor

$$E = h\omega \sum_{\mu=-2}^{2} (n_{\mu} + 1/2) = h\omega (N + 5/2)$$

5/2 es la energía del pto cero \rightarrow parte de la energía del núcleo en su estado fundamental

La secuencia de estados excitados para una vibración cuadrupolar

$$E = \frac{7}{2}\hbar\omega, \frac{9}{2}\hbar\omega, \frac{11}{2}\hbar\omega, \dots$$

Física Nuclear, Tema 8

José Benlliure

Bandas vibracionales

Para determinar el espín y paridad de cada nivel hay que tener en cuenta que la excitación está mediada por fonones (bosones) \rightarrow f.d.o del sistema es simétrica y el acoplamiento de dos fonones será:

$$\left|j_{1}j_{2}JM\right\rangle = \frac{1}{\sqrt{2}}\sum_{n}\left[\left\langle j_{1}j_{2}m_{1}m_{2}\left|JM\right\rangle\right|j_{1}\right\rangle\left|j_{2}\right\rangle + \left\langle j_{1}j_{2}m_{1}m_{2}\left|JM\right\rangle\right|j_{2}\right\rangle\left|j_{1}\right\rangle\right]$$

teniendo en cuenta:

$$\langle j_1 j_2 m_1 m_2 | JM \rangle = (-1)^{j_1 + j_2 + J} \langle j_2 j_1 m_2 m_1 | JM \rangle$$

resulta

$$|j_{1}j_{2}JM\rangle = \frac{1}{\sqrt{2}} [1 + (-1)^{4+J}] \sum_{M} \left[\left\langle j_{1}j_{2}m_{1}m_{2} | JM \right\rangle | j_{1} \rangle | j_{2} \rangle \right]$$

por tanto la función de onda se anula para J=1,3. La paridad la obtenemos como $(-1)^{I} \rightarrow J^{p}=0^{+}, 2^{+}, 4^{+}$ Extendiendo el acoplamiento a <u>tres fonones</u> $J^{p}=0^{+}, 2^{+}, 3^{+}, 4^{+}, 6^{+}$

Los niveles de energía del modo cuadrupolar será

$$h\omega(MeV) \approx \frac{29.7}{\sqrt{A}} \left(1 - \frac{Z^2}{48A}\right)^{1/2} \left[N + 5/2\right]$$

Bandas vibracionales

Utilizando el mismo razonamiento podemos describir los estados vibracionales octupolares \rightarrow Se trata de estados con paridad negativa, el espín de un fonón será 3h.

José Benlliure

Resonancias gigantes

Modo de excitación nuclear de gran amplitud en los que participan gran número de nucleones.

Ponen en juego E ~ 10 MeV grandes \rightarrow comparado con las energías de las excitaciones de partícula independiente \rightarrow necesitaremos reacciones de fotoabsorción o entre iones pesados para poder excitarlas

Comparación excitaciones individuales-colectivas

Física Nuclear, Tema 8

Resonancias gigantes

CARACTERIZACIÓN DE RESONANCIAS

Valor medio y varianza. Fórmula de Breit-Wigner

$$\sigma(E) = \frac{\sigma_o}{(E - E_m)^2 + \frac{\Gamma^2}{4}}$$

 $\sigma_0 \rightarrow$ valor máximo de la distribución $E_m \rightarrow$ valor medio $\Gamma_m \rightarrow$ anchura media

Resonancias gigantes: clasificación

Dependiendo de si el movimiento colectivo de los nucleones depende de su espín (S) y de su isoespín (T). Además la forma del movimiento depende de la multipolaridad.

- $\Delta S=0 \rightarrow$ no depende de espín \rightarrow ELECTRICAS
- $\Delta S=1 \rightarrow$ depende de espín \rightarrow MAGNETICAS
- $\Delta T=0 \rightarrow$ protones y neutrones vibran en fase \rightarrow ISOESCALARES
- $\Delta T=1 \rightarrow$ protones y neutrones vibran en contrafase \rightarrow ISOVECTORIALES

José Benlliure

Resonancias gigantes: clasificación

Desde un punto de vista microscópico \rightarrow las resonancias se explican como una excitación coherente de excitaciones individuales. Es la interacción residual entre los nucleones la responsable de originar un solo estado colectivo.

ISOESCALARES \rightarrow interacción residual atractiva (menor energía) ISOVECTORIALES → interacción residual repulsiva (mayor energía)

Es una resonancia isovectorial con multipolaridad I=1. La más fácilmente excitable \rightarrow la mejor estudiada Método sondas electromagnéticas \rightarrow fotoabsorción o excitación coulombiana Método de desexcitación \rightarrow emisión de neutrones, fotones o fisión

Modelo macroscópico: el núcleo es un sistema de dos fluidos \rightarrow protones y neutrones

- Al absorber la radiación EM se produce un desplazamiento de un fluido respecto del otro
- la fuerza nuclear obliga a los nucleones a volver a su posición

Goldhaber v Teller : fluidos incompresibles v de superficie constante

$$E = h\omega = h\sqrt{\frac{K}{M}} \approx \sqrt{\frac{R^2}{R^3}} = \frac{1}{\sqrt{R}} \approx A^{-1/6}$$

Steinwedel y Jensen: fluidos vibran en oposición de fase dentro del Volumen nuclear

$$E = h\omega = h\sqrt{\frac{K}{M}} \approx \sqrt{\frac{R}{R^3}} = \frac{1}{\sqrt{R^2}} \approx A^{-1/3}$$
Steinwedel y Jensen Goldhaber y Teller
$$\overbrace{-\frac{1}{2}, \frac{1}{2}, \frac{1$$

Experimentalmente la energía de excitación media de la GDR para núcleos esféricos

t

n

$$E_{GDR} = 31,2A^{-1/3} + 20,6A^{-1/6}MeV$$

El comportamiento promedio de la anchura varía poco con A:

²⁰⁸Pb Γ= 4 MeV ⁶⁴Cu Γ=7 MeV

La GDR para núcleos deformados

Tendremos dos componentes asociadas a oscilaciones

paralelas al eje de simetría $\beta \circ \gamma$

La sección eficaz de la resonancia en función de la energía de excitación puede representarse a partir de dos funciones de Lorentz

Energías medias de ambas componentes para núcleos prolate

(E₁ y E₂ se invierten en el caso de núcleos oblate)

 $\beta = \frac{\sqrt{\frac{4\pi}{5} \left(\frac{E_2}{E_1} - 1\right)}}{\left(\frac{E_2}{2E_1} + 0,8665\right)}$

Las reacciones entre iones pesados permiten excitar la GDR a través del canal de excitación Coulombiana pero también excitan resonancias isoscalares (GQR o GMR) en colisiones con menor parámetro de impacto mediadas por la fuerza nuclear.

Con esta técnica se puede estudiar de forma simultánea modos de excitación isoscalares e isovectoriales

En reacciones inducidas por ¹⁷O a 84 A MeV sobre ²⁰⁸Pb se observa un aumento de la sección eficaz en torno a 10 MeV de energía de excitación que se asocia a la excitación de diferentes resonancias.

Midiendo estas resonancias para diferentes ángulos de difusión se pueden resolver cada una de las resonancias.

Excitaciones de multifonones

Las resonancias gigantes también pueden excitarse en modos de oscilación que corresponden al acoplamiento de más de un fonón. La excitación de estos modos resonantes requiere mucha más energía. En el caso de la GDR la excitación de dos fonones corresponde a ~25 MeV. Para alcanzar estas energías se utilizan reacciones periféricas entre iones pesados relativistas.

²⁰⁹Bi + ²⁰⁸Pb @1 A. GeV \rightarrow existencia de estados de multifonones en el ²⁰⁸Pb (blanco)

→ selección de reacciones periféricas (E*<50MeV) considerando colisiones en las que no hay emisión de nucleones

 \rightarrow selección de fotones emitidos hacia atrás y que por tanto provienen de la desexcitación del ²⁰⁸Pb

Excitaciones de multifonones → producen estados exóticos de la materia nuclear

Estado de multifonones n=4 en el ²⁰⁸Pb

Estado de multifonones n=6 en el ⁴⁰Ca

La resonancia monopolar gigante GMR

Es el único modo que se caracteriza por una oscilación del radio nuclear

→ la frecuencia de vibración está relacionada con el coeficiente de compresibilidad de la materia nuclear
 → EOS , implicaciones astrofísicas

Utilizando un modelo hidrodinámico se puede relacionar la Frecuencia de vibración de la GMR con el coeficiente de compresibilidad de la materia nuclear:

$$E_o = \hbar \omega_o = \hbar \sqrt{\frac{\pi^2 K_A}{9mR^2}}$$

Para el ²⁰⁸Pb E_0 =13,9 MeV y R=1.2A^{1/3} fm se obtiene K_A=221 MeV.

Rotaciones

Otro mecanismo de absorción de energía por parte de los núcleos implicando excitaciones colectivas de nucleones es la rotación.

- Cuánticamente la rotación sólo implica variaciones de energía en cuerpos deformados que roten perpendicularmente su eje de simetría.
- La medida sistemática de los momentos cuadrupolares del primer estado excitado de los núcleos par-par evidencia que los núcleos con números másicos 150<A<180 y 220<A<250 están deformados en su estado fundamental.

La deformación puede ser propia del estado fundamental.
los núcleos situados entre capas tienen una configuración de mínima energía cuando están deformados.

Rotaciones

La deformación puede inducirse o acentuarse en un movimiento rotatorio debido al equibrio entre la fuerza nuclear, la electromagnética y la centrífuga.

- El estado de mínima energía de un sistema en rotación es aquel para el que el momento de inercia es máximo.

$$E_{rot} = \frac{J^2}{2\Im}$$

La deformación aumenta con la velocidades angular:

- Para velocidades angulares pequeñas la configuración más favorable es una deformación oblate que gira alrededor de su eje simetría

- Para velocidades angulares grandes (mayor deformación) la configuración más favorable es la prolate girando alrededor de un eje perpendicular a su eje de simetría

Evidencias experimentales

Para el estudio experimental de las rotaciones se utilizan reacciones entre iones pesados ya que transfieren gran cantidad de momento angular.

Los estados excitados correspondientes a rotaciones se caracterizan midiendo la cascada de gammas emitidos durante la desexcitación.

Física Nuclear, Tema 8

30

Rotaciones: descripción clásica

Si consideramos el núcleo como un sólido rígido caracterizado por sus tres ejes de simetría, el movimiento de este sólido puede caracterizarse a partir de las tres componentes de su momento angular:

$$J^2 = J^2_{x'} + J^2_{y'} + J^2_{z'}$$

El momento angular puede expresarse como el producto de la velocidad angular y el momento de inercia:

$$J_{x'} = \omega_{x'}I_{x'} \qquad J_{y'} = \omega_{y'}I_{y'} \qquad J_{z'} = \omega_{z'}I_{z'}$$

Siendo la energía del sistema: $E = \sum_{i'=1}^{3} \frac{I_{i'}\omega_{i'}^2}{2} = \sum_{i'=1}^{3} \frac{J_{i'}^2}{2I_{i'}}$

En el caso particular de un sólido con simetría axial (prolate, oblate), los momentos de inercia de un elipsoide de semieje a y b puede calcularse como:

$$I_{z'} = I_{\parallel} = \frac{2}{5}Ma^2 = \frac{2}{5}MR_o^2 \frac{a^2}{R_o^2} = I_o \frac{a^2}{R_o^2}$$
$$I_{x'} = I_{y'} = J_{\perp} = \frac{2}{5}M\frac{a^2 + b^2}{2} = I_o \frac{a^2 + b^2}{2R_o^2}$$

Donde I_0 es el momento inercia de una esfera con radio R_0 y volumen equivalente al del elipsoide.

Rotaciones: descripción clásica

Teniendo en cuenta que las longitudes de los semiejes del elipsoide están relacionadas con los parámetros de deformación a partir de las expresiones:

$$a = R_o(1+\varepsilon)$$

$$b = \frac{R_o}{(1+\varepsilon)^{1/2}} \left\{ \frac{\Delta R}{R_o} \approx \frac{3}{2}\varepsilon \right\}$$

$$\beta = \sqrt{\frac{4\pi}{5}}\varepsilon$$

$$\frac{\Delta R}{R_o} = \frac{3}{4}\sqrt{5\pi}\beta$$

→ Vemos que es posible conectar la energía de rotación con el momento de inercia para diferentes deformaciones

Rotaciones: descripción cuántica

En este caso utilizaremos el operador que define la rotación Γ

Los números cuánticos asociados a este operador son:

J momento angular

- K proyección sobre el sistema de ejes principales
- m proyección sobre el sistema de referencia del laboratorio

Los operadores asociados a estos nº cuánticos conmutan con el hamiltoniano del sistema

$$\begin{split} & \left[H,\Upsilon^2\right] = \left[H,\Upsilon_z\right] = \left[H,\Upsilon_{z'}\right] = 0\\ & \text{Donde el H tiene la forma} \qquad H = \hbar^2\sum_{i'=1}^3\frac{\Upsilon^2_{i'}}{2I_{i'}} \end{split}$$

La f.d.o que describe el sistema es de la forma $|j, m, k\rangle$ y verifica

$$\begin{split} H|j,m,k\rangle &= E|j,m,k\rangle \\ \Upsilon^2|j,m,k\rangle &= j(j+1)|j,m,k\rangle \\ \Upsilon_z|j,m,k\rangle &= m|j,m,k\rangle \\ \Upsilon_{z'}|j,m,k\rangle &= k|j,m,k\rangle \end{split}$$

considerando un sólido con simetría axial

$$\begin{split} I_{x'} &= I_{y'} = I_{\perp} \\ I_{z'} &= I_{\parallel} \end{split}$$

Bandas rotacionales

considerando un sólido con simetría axial

$$\begin{split} I_{x'} &= I_{y'} = I_{\perp} \\ I_{z'} &= I_{\parallel} \end{split}$$

$$H=\hbar^2\left[\frac{\Upsilon^2-\Upsilon^2_{z'}}{2I_{\perp}}+\frac{\Upsilon^2_{z'}}{2I_{\parallel}}\right]$$

y teniendo en cuenta:

$$\gamma^{2} = \gamma_{x'}^{2} + \gamma_{y'}^{2} + \gamma_{z'}^{2} \Longrightarrow \qquad \gamma_{x'}^{2} + \gamma_{y'}^{2} = \gamma^{2} - \gamma_{z'}^{2}$$

:

Por tanto los valores propios de energía de los estados rotacionales podrán calcularse como:

$$E = \frac{\hbar^2}{2I_\perp} \left[j(j+1) - k^2 \right] + \frac{\hbar^2}{2I_\parallel} k^2$$

El caso de un núcleo rotando en un eje perpendicular al eje de simetría k=0

$$E = \frac{\hbar^2}{2I_\perp} j(j+1)$$

Bandas rotacionales: núcleos par-par

En mi sistema nuclear tengo que considerar tanto el momento angular intrínseco del núcleo como el de rotación

$$I = J + \Upsilon$$
 \rightarrow Para núcleos par-par J=O, luego $I = \Upsilon$.

Por tanto la de energía de los niveles corresponde directamente a la banda rotacional

$$E = \frac{\hbar^2}{2\mathcal{J}_\perp}i(i+1)$$

Recordamos que en el caso de núcleos par-par y atendiendo a antisimetrización impuesta por Pauli J=0⁺,2⁺,4⁺ ...

Energías muy inferiores a las de excitaciones intrínsecas

Bandas rotacionales: núcleos impares

núcleos impares

 $I=J+\Upsilon$

momento angular rotación + momento angular intrínseco

Distingo ahora proyecciones del momento angular total I \rightarrow K y del momento angular del nucleón de valencia J $\rightarrow \Omega$

Para núcleos con simetría axial el momento angular de rotación es perpendicular al eje de simetría y K= Ω

El hamiltoniano total del sistema puede escribirse como

 $H = \hbar^2 \left[\frac{\Upsilon^2 - \Upsilon_{z'}^2}{2\mathcal{J}_{\perp}} + \frac{\Upsilon_{z'}^2}{2\mathcal{J}_{\parallel}} \right] + H_N \qquad \qquad \text{donde } \mathsf{H}_{\mathsf{N}} \text{ es el hamiltoniano del modelo de Nilsson}$

Las energía de los niveles que constituyen la banda de rotación (recordar que si el eje de rotación es perpendicular al eje de simetría k=0)

$$E = \hbar^2 \frac{\Upsilon^2}{2\mathcal{J}}$$

Bandas rotacionales: núcleos impares

Donde _

$$\Upsilon^2 = (I - J)^2 = I^2 + J^2 - 2IJ$$

Expresión que se puede transformar si utilizamos los operadores escalera

$$\begin{split} I'_{\pm} &= I_{x'} \pm i I_{y'} \\ J'_{\pm} &= J_{x'} \pm i J_{y'} \\ J_{z'} &= I_{z'} = K \end{split} \rightarrow \text{Permite escribir} \\ I'_{+}J'_{-} + I'_{-}J'_{+} &= 2(I_{x'}J_{x'} + I_{y'}J_{y'}) \\ I'_{+}J'_{+} &= 2(I_{x'}J_{x'} + I_{y'}J$$

$$IJ = I_{x'}J_{x'} + I_{y'}J_{y'} + I_{z'}J_{z'} = I_{z'}J_{z'} + (I'_{+}J'_{-} + I'_{-}J'_{+}) = K^{2} + (I'_{+}J'_{-} + I'_{-}J'_{+})$$

Representa el efecto de la inercia que ejerce el core del núcleo en rotación sobre el nucleón de valencia (debido a la fuerza de coriolis).

→ Puede interpretarse como el H acoplamiento que mencionábamos en el modelo adiabático

$$H_{aco} = -\frac{\hbar^2}{2\mathcal{J}} (I'_+ J'_- + I'_- J'_+)$$

Física Nuclear, Tema 8

José Benlliure

Bandas rotacionales: núcleos impares

despreciando este término de acoplamiento la energía de los estados de un núcleo impar

$$E = -\frac{\hbar^2}{2\mathcal{J}}[i(i+1) + j(j+1) - 2K^2] + \varepsilon_N$$

 $\begin{array}{l} \mbox{Como J y K son constantes durante la rotación,} \\ \mbox{sus n}^{o} \mbox{ cuánticos y } \epsilon_{N} \mbox{ sólo describen el nivel} \\ \mbox{sobre el que se construye la banda de rotación.} \end{array}$

→ la secuencia de niveles depende únicamente de i(i+1)

El ²³⁹Np tiene una banda rotacional sobre su estado fundamental deformado 5/2⁺ que corresponde a un nivel de Nilsson

Energía de un nivel de Nilsson

José Benlliure

Bandas rotacionales

El hamiltoniano que describe un núcleo excitado en rotación es de la forma:

$$H = H_{int} + H_{rot} + H_{aco} \qquad \begin{bmatrix} H_{int} \\ H_{rot} \end{bmatrix}$$

 H_{int} → representa las excitaciones intrínsecas H_{rot} → representa el movimiento de rotación H_{aco} → acoplamiento de ambos

Si consideramos que la frecuencia del movimiento de rotación es muy inferior a la de las excitaciones intrínsecas (aproximación adiabática) -> la rotación no afectará a la f.d.o de las excitaciones individuales

 $H = H_{int} + H_{rot}$ \rightarrow Las bandas rotacionales pueden construirse sobre un nivel excitado de partícula independiente

Análogamente podremos expresar la función de onda y los valores propios de energía de la forma:

Según cálculo anterior

$$\Psi = \varphi_{int}\phi_{rot} \qquad E = E_{int} + E_{rot}$$

Bandas rotacionales

El ¹⁶⁵Tm presenta 6 bandas rotacionales construidas sobre respectivos estados excitados del núcleo deformado (modelo de Nilsson).

Momento de inercia nuclear

La determinación de la energía y el J para cada de núcleos de una banda rotacional permite obtener información sobre el momento de inercia

$$E = \frac{\hbar^2}{2\mathcal{J}}J(J+1) \approx \frac{\hbar^2}{2\mathcal{J}}J^2$$

 \rightarrow Si representamos E= f(J(J+1)) la inversa de la pendiente es el momento de inercia

Suposición → comportamiento sólido rígido

discrepancia entre los momentos de inercia experimentales y calculados

➔ No todos los nucleones participan en el movimiento de rotación

Momento de inercia

Esta discrepancia puede entenderse si tenemos en cuenta la energía de apareamiento de los nucleones

En los núcleos par-par todos los nucleones están apareados → superfluidez: los nucleones no oponen resistencia a la rotación y disminuye el momento de inercia

La fuerza centrífuga puede romper pares aumentando así la resistencia al movimiento y por tanto aproximando el momento de inercia del núcleo al de un sólido rígido

Momento de inercia vs. E rotación unidades de h barra - - - predicción sólido rígido

El exceso de energía se invierte en romper pares→ aumenta el momento de inercia hasta el sólido rígido BACKBENDING

Física Nuclear, Tema 8

José Benlliure

Momento de inercia

Puede estimarse el valor de momento angular orbital a partir del cual al núcleo le es menos costoso el romper un par y continuar la rotación con los nucleones no apareados

→el cambio del momento de inercia se identifica con una transición de fase

Superdeformación

Se ha observado experimentalmente casos de deformación máximo

 $\beta \approx 0.6 \rightarrow 2:1$

Fisión nuclear: balance energético

La fisión nuclear es el movimiento colectivo de mayor escala que se conoce. En él la excitación colectiva de un gran número de nucleones induce una deformación extrema del núcleo llegando a su división en dos fragmentos.

José Benlliure

Aunque el balance energético sea favorable (Q>0) la probabilidad de que un núcleo fisione está determinada por la variación de la energía de ese núcleo en función de su deformación.

La variación de la energía de un núcleo en función de su deformación está determinada por la variación de su energía superficial y Coulombiana con la deformación.

La competición entre estos dos términos de energía dan lugar a la aparición de una barrera en el potencial de un núcleo en función de su deformación. En principio esta barrera inhibe el proceso de fisión aunque energéticamente sea favorable..

Podemos calcular como varía la energía potencial del núcleo en función de su deformación a partir de las dependencias de las energías de superficie y Coulombiana con la deformación:.

$$V(\alpha) = E_s(\alpha) - E_c(\alpha)$$

Para calcular la evoluctión de las energías de superficie y Coulombiana con la deformación debemos partir de las expresiones que caracterizan una superficie nuclear deformada. Pero como la fisión preserva la simetría cilíndrica (m=0) podemos sustituir los armónicos esféricos por polinomios de Legendre.

$$R(\theta,\varphi) = R_{\alpha} \left[1 + \sum_{\lambda,\mu} \alpha_{\lambda\mu} Y_{\lambda}^{\mu}(\theta,\varphi) \right] \approx R_{\alpha} \left[1 + \left(\frac{2\lambda + 1}{4\pi} \right)^{1/2} \sum_{\lambda} \alpha_{\lambda} P_{\lambda} \left(\cos \theta \right) \right]$$

Si nos limitados a deformaciones cuadrupolares (λ =2):

$$R(\theta) = R_{\alpha} \left[1 + a_2 P_2 \left(\cos \theta \right) \right] \qquad a_2 = \left(\frac{5}{4\pi} \right)^{1/2} \alpha_2$$

La energía superficial puede calcularse como:

$$E_{S} = \sigma \int dS$$

$$dS = \frac{R^2 d\Omega}{r}$$

donde *n* es un vector unitario normal a la superficie que podemos calcular a partir de la expresión:

 $\stackrel{\mathbf{r}}{n} = \frac{\nabla R_{\alpha}(\theta)}{\left|\nabla R_{\alpha}(\theta)\right|}$

Teniendo en cuenta:

$$R_{\alpha} = \frac{R}{1 + a_{2}P_{2}(\cos\theta)}$$

$$\nabla = \hat{e}_{r}\frac{\partial}{\partial R} + \hat{e}_{\theta}\frac{1}{r}\frac{\partial}{\partial \theta} + \hat{e}_{\varphi}\frac{1}{R\sin\theta}\frac{\partial}{\partial \varphi} \rightarrow \nabla R_{\alpha} = \frac{1}{1 + a_{2}P_{2}(\cos\theta)}\hat{e}_{r} - \frac{a_{2}}{\left(1 + a_{2}P_{2}(\cos\theta)\right)^{2}}\frac{\partial P_{2}(\cos\theta)}{\partial \theta}\hat{e}_{\theta}$$

A partir de estas ecuaciones podemos determinar la superficie nuclear como:

$$S = R_{\alpha}^{3} \int \frac{\left(1 + a_{2}P_{2}(\cos\theta)\right)^{2}}{R_{\alpha}} \left(1 + \frac{a_{2}^{2}\left(\partial P_{2}(\cos\theta)/\partial\theta\right)^{2}}{\left(1 + a_{2}P_{2}(\cos\theta)\right)^{2}}\right)^{1/2} d\Omega$$

Desarrollando en serie en función de a_2 y teniendo en cuenta: $\int_{-1}^{1} P_2(\cos\theta) d\cos\theta = 0$

$$S = 2\pi R_{\alpha}^{2} \int_{-1}^{1} \left\{ 1 + a_{2}^{2} \left[P_{2}^{2}(\cos\theta) + \frac{1}{2} \left(\frac{\partial P_{2}(\cos\theta)}{\partial\theta} \right)^{2} \right] \right\} d(\cos\theta)$$

Haciendo el cambio de variable ($x = cos\theta$) e introduciendo las expresiones de P_2 y su derivada respecto a θ .

$$S = 2\pi R_{\alpha}^{2} \left[2 + a_{2}^{2} \left(\frac{2}{5} + \frac{1}{2} \int_{-1}^{1} 9x^{2} (1 + x^{2}) dx \right) \right] = 4\pi R_{\alpha}^{2} \left(1 + \frac{4}{5} a_{2}^{2} + L \right)$$

Si expresamos R_{α} en función del radio de una esfera con volumen equivalente R_{α} :

$$\frac{4}{3}\pi R_o^3 = \int dV = \int d\Omega \int_0^{R(\theta)} R^2 dR = \frac{1}{3} \int R^3(\theta) d\Omega = \frac{R_a^3}{3} \int \left(1 + 3a_2 P_2(\cos\theta) + 3a_2^2 P_2^2(\cos\theta) + a_2^3 P_2^3(\cos\theta)\right) d\Omega$$

Limtándonos hasta tercer orden en el desarrollo en a_2 :

$$R_{\alpha} = R_o \left(1 - \frac{1}{5} a_2^2 - \frac{2}{105} a_2^3 + L \right)$$

Sustituyendo en las ecuaciones anteriores obtenemos:

$$S = 4\pi R_0^2 \left[1 + \frac{2}{5}a_2^2 - \frac{4}{105}a_2^3 + \mathsf{L} \right] \Longrightarrow E_s = E_s^o \left[1 + \frac{2}{5}a_2^2 - \frac{4}{105}a_2^3 + \mathsf{L} \right]$$

De forma análoga podemod determinar la variación de energía Coulombiana con la deformación:

$$E_{C} = E_{C}^{o} \left[1 - \frac{1}{5} a_{2}^{2} - \frac{4}{105} a_{2}^{3} + L \right]$$

La variación total de la energía del núcleo con la deformación será:

Parámetro de fisilidad:

$$\Delta E(a_2) = E_s(a_2) + E_c(a_2) - E_s^0 - E_c^o = E_s^o \left[\frac{2}{5} (1-x)a_2^2 - \frac{4}{105} (1+2x)a_2^3 + L \right] \qquad x = \frac{E_c^0}{2E_s^o} = \frac{Z^2}{A} \frac{a_c}{2a_s}$$

La barrera de fisión puede obtenerse aplicando la condición de máximo a la ecuación anterior.

$$\frac{\partial \Delta E}{\partial a_2} = 0 = E_s^o \left[\frac{4}{5} (1-x)a_2 - \frac{4}{36} (1+2x)a_2^2 \right]$$

Esta ecuación tiene dos soluciones:

 $a_2 = 0$

mínimo: estado fundamental

 $a_2 = \frac{7(1-x)}{1+2x}$

máximo: deformación correspondiente al máximo de la barrera

A partir de este resultado podemos obtener la altura de la barrera:

$$B_f = \frac{98}{15} \frac{(1-x)^3}{(1+2x)^2} E_s^o$$

La barrera de fisión crece inversamente con el parámetro de fisidad:

$$x = \frac{E_C^0}{2E_S^o} = \frac{Z^2}{A} \frac{a_C}{2a_S} = \frac{1}{51.66} \frac{Z^2}{A}$$

Barrera de fisión: efectos de estructura

El modelo de la gota líquida que hemos utilizado para calcular la barrera de fisión no tienen en cuenta la Estructura del núcleo.

Un cálculo realista proporcina las siguientes conclusiones:

- los núcleos pueden tener un estado fundamental deformado
- el potencial puede presentar varias barreras

La barrera de fisión disminuye al aumentar Z y disminuir A:

$$x = \frac{E_C^0}{2E_S^o} = \frac{Z^2}{A} \frac{a_C}{2a_S} = \frac{1}{51.66} \frac{Z^2}{A}$$

Distribución de masa de fragmentos de fisión

La distribución de masa de los fragmentos de fisión resultantes estará definida por la variación de la energía del núcleo en función de la asimetría de masas. Tomando como ejemplo el modelo de la gota líquida debemos estudiar cómo varían las energías de superficie y Coulombianan con la asimetría de masas. El mínimo de energía definirá la asimetría del sistema final.

Según el modelo de la gota líquida los núcleos fisionantes pesados favorecen configuraciones finales Simétricas mientras que los ligeros prefieren las asimétricas (evaporación de nucleones o clusters).

Distribución de masa de fragmentos de fisión

Fragmentos de fisión: efectos de estructura

Mecanismos de fisión: fisión espontánea

Fragmentos de fisión: efectos de estructura

Mecanismos de fisión: fisión espontánea

Núcleos muy pesados (Z2/A>45) pueden fisionar de forma espontánea por penetración cuántica de la barrera.

$$P = \exp\left\{-\frac{2}{\mathsf{h}}\int_{\varepsilon_1}^{\varepsilon_2} \left[2B(V(\varepsilon) - T)\right]^{1/2} d\varepsilon\right\}$$

Si consideramos una barrera parabólica:.

Física Nuclear, Tema 8

$$P = \exp\left\{-\pi(\varepsilon_2 - \varepsilon_1) \left(\frac{B_f}{2h^2}\right)^{1/2}\right\}$$

La vida media de la fisión espontánea podemos calcularla como:

$$\tau = \frac{\mathsf{h}}{\Gamma} = \frac{1}{n \cdot P}$$

donde P es la probabilidad de penetración de la barrera y $n=\omega/2\pi=2.5\ 10^{20}$ es la frecuencia de asalto de la barrera que podemos estimar asumiendo un oscilador con h ω =1 MeV para el estado fundamental 58 ΔE B_{f} $a_{2} = 0$ $a_{2} = \frac{7(1-x)}{1+2x}$ a_{2}

Mecanismos de fisión: fisión inducida por reacciones

Una reacción nuclear como la captura de un neutrón puede comunicarle al núcleo una energía de excitación interna igual o superior a la altura de la barrera. Esa energía interna puede iniciar un movimiento colectivo de deformación hasta que el núcleo alcance la deformación de la barrera.

59

En estos casos la probabilidad de fisión no sólo depende de la barrera sino de los efectos de estructura. El ²³⁶U y el ²³⁹U tienen una barrera similar, 6.2 y 6.6 MeV respectivamente. Sin embargo su probabilidad de fisión por captura de un neutrón es muy diferente debido a la energía de apareamiento:

$$E^* = m(^{236}U^*) - m(^{236}U) = m(^{235}U) + m_n - m(^{236}U) = 6.5 \text{ MeV}$$

$$E^* = m(^{239}U^*) - m(^{239}U) = m(^{238}U) + m_n - m(^{239}U) = 4.8 \text{ MeV}$$

Mecanismos de fisión: fisión inducida por rotación

Las reacciones entre iones pesados con parámetro de impacto no nulo producen un núcleo compuesto en rotación. La fuerza centrífuga hace disminuir la barrera de fisión.

