Rh-Catalyzed Tandem C-H Allylation and Oxidative Cyclization of Acetanilides: A New Entry UNIVERSIDADE **DE SANTIAGO** to Indoles **DE COMPOSTELA**

Ana Cajaraville, Susana López, Jesús A. Varela_and Carlos Saá

Dpto de Química Orgánica y Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS) Universidade de Santiago de Compostela, 15782, Santiago de Compostela

carlos.saa@usc.es

Objective

Transition metal-catalyzed C-H bond functionalization of organic molecules has been recognized as a powerful atom-economy strategy for the synthesis of a variety of heterocycles.¹ The preparation of 2,3-disubstituted indoles by Pd-, Ru- and Rh-catalyzed cyclization of aniline derivatives with internal alkynes has been intensively studied over the last few years.²

Herein, we report a new synthesis of 2-substituted indoles³ by tandem Rhcatalyzed cyclization of acetanilides with allylic derivatives, thus showing the equivalency of these coupling partners with terminal alkynes.

2-Methylindoles 3 by Tandem Rh-Catalyzed Cyclization of Substituted Acetanilides

bis-Indoles by Tandem Rh-Catalyzed Cyclization of bis-Acetanilides

Acknowledgement: This work was supported by MICINN [projects CTQ2011-28258 and Consolider Ingenio 2010 (CSD2007-00006)] and Xunta de Galicia (projects CN2011/054 and EM 2012/051). A.C thanks Ministerio de Ciencia e Innovación for a predoctoral fellowship (BES 2009-024194). References:

¹ (a) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. *Angew. Chem. Int. Ed.* 2012, *51*, 8960-9009. (b) Kuhl, N.; 👂 Hopkinson. M. N.; Wencel-Delord J.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51,, 10236-10254. ² [Pd]: (a) Wurtz, S.; Rakshit, S.; Neumann, J. J.; Droge, T.; Glorius, F. Angew. Chem. Int. Ed. 2008, 47, 7230-7233. [Ru]: (b) Ackermann, L.; Lygin, A. V. Org. Lett. 2012, 14, 764-767. [Rh]: (c) Stuart, D. R.; [Ku]: (c) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 18326-18339 ³ (a) Cajaraville, A.; López, S.; Varela, A. J.; Saá, C. Org. Lett. **2013**, *15*, 4576-4579.

Optimization											
	H N R = Me Et <i>i</i> Pr Bu	R 1a 1ab 1ac 1ad	+ OR ₁ 2 R ₁ = CO ₂ Me CO ₂ /Bu PO(OEt) ₂ COMe	[Cp*RhCl ₂] ₂ (; AgSbF ₆ (13 Cu(OAc) ₂ .H ₂ (Solvent 2a 2ab 2ac 2ad	2.5 mol%) 3 mol%) → O (2.1 eq) t, Δ		9				
ntry	Substra	te	Allylic derivative	Solvent	T/°C	Time	Vield (%) ^[a]				

Cuiry	Substrate	derivative	Joiveni	17 0	TIME	(%) [ɑ]
1	1a	2a	DCE	120	20 h	66
2	1a	2a	<i>t</i> -BuOH	130	24 h	75
3	1a	2a	<i>t</i> -AmOH	120	24 h	82
4 [b]	1a	2a	<i>t</i> -AmOH	120	15 h	75
5	1a	2ab	t-AmOH	120	24 h	47
6	1a	2ac	<i>t</i> -AmOH	120	24 h	49
7	1a	2ad	t-AmOH	120	24 h	68
8	1 ab	2a	t-AmOH	120	24 h	63
9	1ac	2a	t-AmOH	120	24 h	38
10	1 ad	2a	<i>t</i> -AmOH	120	24 h	(59) ^[c]

[[]a] Conditions: 1a (0.37 mmol), 2a (0.41 mmol), [1a] = 0.074 M. Isolated yields of 3. [b] Conditions: [Cp*Rh(CH₃CN)₃]SbF₆ (5 mol%). [c] o-allylacetanilide 4 was obtained.

EQUIPO CONSOL

3

Mechanistic Proposal

XUNTA DE GALICIA

2010

CONSELLERÍA DE EDUCACIÓN E ORDENACIÓN UNIVERSITARIA