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We recently described a new, efficient Ru(II)-catalyzed cyclization

of terminal alkynals 1 to cycloalkenes 2.1 Heating the 5-alkynal 1a 

(n=1, X=C(CO2Me)2) in a 5% solution of the catalyst in AcOH

afforded, after 24 h at 90 ºC, the cyclopentene 2a in excellent 

yield. Heating at higher temperatures led to faster reactions, but 

with increasing amounts of isomer 3a. Use of the more electron-rich 

and sterically demanding catalyst [Cp*Ru(CH3CN)3]PF6 gave similar 

results. Interestingly, addition of 5% of dppf to the reaction 

mixture led exclusively to 2a. 
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Ru(II)-Catalyzed Cyclization of Terminal Alkynals

The likely mechanism2 would involve the formation of Ru(II) 

vinylidene species I, which upon nucleophilic addition of the 

acetic acid, would afford the vinyl Ru species II. Next, an aldol-

type condensation would give the acyl Ru hydride III. Then, 

decarbonylation (being the terminal carbon of the alkyne the one 
lost as CO) followed by reductive elimination would afford the 

observed cycloalkenes 2. When CpRu(dppm)Cl was used as 

catalyst, the conjugated aldehydes 11 were obtained by 

reductive elimination from III (no decarbonylation takes place in 

this case due to the bidentate nature of dppm ligand). 

References: 1 Varela, J. A.; González-Rodríguez, C.; Rubín, S. G.; Castedo, L.; Saá, C. J. Am. Chem. Soc. 2006, 128, 9576.
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Mechanistic Proposal
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a L= CH3CN, dppf= diphenylphosphinoferrocene. b Isolated yields. c GC yields.

Mechanistic Considerations
•Alkynone 4 afforded the corresponding cyclopentene 5, indicating 

that an oxidative addition of the ruthenium to the aldehyde C-H bond 

is unlikely.

•Either enlarged alkynals 1b (n=3), or alkynes without the aldehyde

group 6, gave rise to non cyclized compounds, 7 and 8, respectively,

with loss of one carbon, which suggested that the terminal carbon of 

the alkyne is the one lost during the reaction.

•When non-terminal alkynal 9 was used, the conjugated ketone 10, 

keeping all the carbons, was isolated.

• Interestingly, terminal alkynals were able to cycloisomerize to 

conjugated aldehydes (all the carbons of the starting material 

remained) by just using CpRu(dppm)Cl as catalyst in iPrOH/H2O as 

solvent.
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