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“Formal” Ru (II)-Catalyzed [4+2+2] Cycloadditions of 1,6-Diynes to 1,3-Dienes

We recently described a new “formal” ruthenium-catalyzed [4+2+2] 

cycloaddition of 1,6-diynes to 1,3-dienes to give  conjugated 1,3,5-

cyclooctatrienes.1 Their formation could be explained in two steps: 

initial formation of tetraenes 3 according to the metal-catalyzed 

cycle showed in Figure 1 followed by thermal conrotatory

electocyclic ring closure of 3.
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Interestingly, when cis-propenylfurane 2a was used, the tricyclic

cyclooctatriene 5 was obtained in acceptable yield. The reaction 

occurs by initial formation of 4a followed by a [1,5]-hydrogen shift. 

However, in the case of the styrene 2b, the opened aryltriene 3b

was initially obtained, which was quantitatively cyclized to 

arylcyclohexadiene 6 upon heating (Scheme 1).
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When cyclic alkenes 7 were used, 1,3-cyclohexadienes 8 were 

obtained in acceptable yields. Surprisingly, when acyclic alkenes 9

were used, isomeric 1,3-cyclohexadienes 10 were obtained in rather 

good yields (Scheme 2). 

The likely mechanism for these processes would involve the 

formation of ruthenacycle intermediate V. Depending on the alkene

nature, two alternatives could be envisioned from V: a) the 

well-established reductive elimination in the case of cyclic alkenes;2 

b) a new β-elimination + reductive elimination to give 1,3-hexadienes 

11 in the case of acyclic alkenes. Final electrocyclization of 11 gave 

1,3-cyclohexadienes 10.
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