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ABSTRACT

Aims The objective of this study was to examine brain activity, with particular attention to prefrontal function,
during response execution and inhibition in youths who have engaged in binge drinking (BD) for at least 2 years.
Design Event-related potentials (ERPs) were recorded twice within 3 years, during performance of a Go/NoGo task.
Setting The study was part of a longitudinal study of the neurocognitive effects of BD. Participants A total of 48
undergraduate students, 25 controls (14 females) and 23 binge drinkers (10 females), with no personal or family
history of alcoholism or psychopathological disorders. Measurements The Go-P3 and NoGo-P3 components of the
ERPs were examined by principal component analysis and exact low-resolution tomography analysis (eLORETA).
Findings Binge drinkers showed larger Go-P3 amplitudes than controls in the first and second evaluations
(P = 0.019). They also showed larger NoGo-P3 amplitude in the second evaluation (P = 0.002). eLORETA analyses in
the second evaluation revealed significantly greater activation of the right inferior frontal cortex (rIFC) in binge
drinkers than in controls during successful inhibition (P < 0.05). Conclusions Young binge drinkers appear to show
abnormal brain activity as measured by event-related potentials during response execution and inhibition which
may represent a neural antecedent of difficulties in impulse control.
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INTRODUCTION

Alcohol use is common among adolescents and young
students. At an age as young as 15–16 years, more than
90% of European students have reportedly drunk alcohol
at some point in their lives, on average having their first
drink at the age of 12 years, and getting drunk for the
first time at 14 years [1]. In a situation similar to that
reported in the United States [2] almost half of adoles-
cents in Europe are current drinkers, and approximately
60% of these drinkers follow a pattern of consumption
known as binge drinking (BD) [3]. This type of drinking,
characterized by the consumption of large amounts of
alcohol in a short time followed by a period of abstinence,
is generally defined as the consumption of five or more

drinks (four or more for females) on one occasion within
a 2-hour interval at least once in the last 2 weeks [4].

While neurotoxicity induced by chronic alcoholism
has long been known [5], the extent to which BD causes
damage is not well known. The main contributions are
from animal studies, which have shown that several
BD episodes may cause more damage than an equivalent
amount of alcohol without withdrawal episodes or con-
sumed on only one occasion [6]. Some studies have also
shown that adolescent rats exhibit substantially more
alcohol-induced damage than adult rats in brain regions
such as the frontal cortex and the limbic system [7–10].
Similarly, young rats are more likely to exhibit cognitive
impairment in learning and memory as result of exces-
sive alcohol consumption [11,12].
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Recent studies have shown the harmful conse-
quences of alcohol use disorders (AUD) in human ado-
lescents. Such studies reveal that AUD in adolescents
can induce brain structure abnormalities and, as in
animals, these abnormalities affect mainly the prefrontal
cortex (PFC) and the hippocampus [13–16]. Cognitive
deficits compatible with damage in these areas have also
been revealed consistently in adolescents and youths
with AUD [17,18].

Although scarce, studies examining neurocognition
in adolescents with a BD pattern emphasize that binge
drinkers (BDs) show greater difficulties in neuro-
psychological tests involving PFC activity, such as
working memory, inhibitory control and decision-
making [19–25], and in learning and memory tasks
associated typically with the hippocampus and the
medial temporal lobe [26].

The sensitivity of the adolescent brain to the harmful
effects of alcohol appears to be related to the fact that
adolescence is a critical period of neuromaturation,
during which important changes in structure and func-
tion take place [27]. The region experiencing the most
noticeable changes is the PFC, which does not reach
maturity until early adulthood [28]. Partly as a result of
these maturational events in the PFC, executive control
processes undergo profound development throughout
adolescence [29].

In the present study, event-related potentials (ERPs)
were recorded during a Go/NoGo task, in order to identify
any possible neurofunctional anomalies in young BDs.
This paradigm requires that subjects respond to some
trials (Go stimuli) and refrain from responding to others
(NoGo stimuli). We chose this task because: (i) to date, no
neurofunctional study has evaluated the relationship
between inhibitory control and BD; (ii) in addition to the
stop-signal task, this is the most suitable task for measur-
ing suppression of a pre-potent response [30]; and (iii)
engaging PFC to perform this task has been demonstrated
repeatedly [31].

During the task, NoGo stimuli elicit ERPs consisting
of a negative deflection (NoGo-N2) at approximately
200–300 ms post-stimulus, with the maximum at
fronto-central electrodes, followed by a positive wave
(NoGo-P3) between 300–500 ms post-stimulus, with
a more fronto-central distribution than the Go-P3 [32].
Although NoGo-N2 has been linked traditionally to
response inhibition [33,34], recent evidence relates it
to conflict-monitoring processes [35–37]. With regard
to NoGo-P3, it has been stated repeatedly to reflect
inhibition-related activity [38–40].

Studies using ERPs, transcranial magnetic stimula-
tion (TMS) and functional magnetic resonance imaging
(fMRI) have provided evidence that the neural circuits
engaged in inhibitory control are included in several PFC

areas, especially the right inferior frontal cortex (rIFC)
[31,41,42], as well as other regions [43–45].

Neurophysiological dysfunctions have been well
established in chronic alcoholics during tasks involving
inhibitory control [46,47]. Nevertheless, to our knowl-
edge, response inhibition has not been evaluated from a
neurophysiological view in young BDs.

In the present study, the P3 component elicited by
ERPs during the performance of a Go/NoGo task and its
neural sources, estimated by exact low-resolution electro-
magnetic tomography analysis (eLORETA), were used
to examine the effects of the BD pattern on inhibitory
control in young university students. On the basis of the
above remarks (disruptive effects of BD on neurocogni-
tive functioning, sensitivity of PFC and vulnerability of
immature brain), we predicted that young BDs would
exhibit an anomalous prefrontal response during perfor-
mance of a Go/NoGo task. Similarly, we were interested in
assessing whether the possible anomalies related to this
consumption pattern were maintained, attenuated or
increased over a 2-year follow-up period.

METHODS AND MATERIALS

Participants

Forty-eight undergraduate students participated in the
study. Twenty-five were classified as controls (14 females)
and 23 as BDs (10 females). The students were evaluated
at two different times, when they were aged 18–19 and
20–21 years.

The participants, all students at the University of San-
tiago de Compostela (Galicia, Spain), were selected on the
basis of their responses to a questionnaire that included
the Galician validated version of the Alcohol Use Disorder
Identification Test (AUDIT) [48], as well as other items
regarding use of alcohol and other drugs.

According to the quantitative definition of BD used
in European countries such as Spain, where a standard
alcoholic drink (SAD) equals about 10 g of alcohol, in the
BD group this study included participants who: (i) drank
six or more SADs on the same occasion one or more times
per week or (ii) drank six or more SADs on the same
occasion at least once a month and during these episodes
drank at least three drinks per hour. The same criteria
were used in both evaluations, so that BDs had to have
maintained this drinking pattern for at least 2 years. Par-
ticipants who drank less than this amount at the time of
both assessments were included in the control group.

The participants were also questioned about their
personal and family history of alcoholism (FHA) and
medical or psychopathological disorders, using the
Symptom Checklist-90 revised questionnaire (SCL-90-R)
[49] and an adapted version of the Semi-Structured
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Assessment for the Genetics of Alcoholism by the Col-
laborative Study on the Genetics of Alcoholism (COGA)
project [50]. The exclusionary criteria are shown in
Table 1, and the demographic and drinking characte-
ristics of the selected participants are shown in Table 2
and Fig. 1.

Procedure

Each participant was assessed at two different times
within a 2-year interval. They were asked to abstain from
consuming drugs and alcohol for 12 hours before the
experiment and none of them reported any BD episodes
in the 2 days prior to the trial. The participants were also
instructed not to smoke or drink tea/coffee for at least 3
hours before the assessments.

A Go/NoGo task was used to evaluate response ex-
ecution and response inhibition. The participants were
instructed to fixate on a small cross located centrally on a
CRT monitor. Squares or circles were presented at a visual

angle of 3 ¥ 3° for 50 ms over the cross, with a 1000–
1400 ms inter-stimulus interval (onset–onset). The
number of stimuli ranged between 140 and 160. The
participants had to press a button with their preferred
hand in response to the Go trials (green circle and blue
square) and not to respond to the NoGo trials (blue circle
and green square). Stimuli were presented equiprobably
in a randomized order.

ERP recording

The electroencephalogram (EEG) was recorded using
a Braincap with 32 active electrodes (extended 10–20
International System) referred to the nose tip and
grounded with an electrode at Fpz. Vertical and horizon-
tal electro-oculogram readings were also recorded.
Electrode impedances were maintained below 10 kW.
EEG signals were amplified and digitized continuously
at a rate of 500 Hz, and filtered with a 0.01–100 Hz
band-pass filter.

Figure 1 Mean number of drinks consumed by the control and
binge drinking subjects during a standard week for the first and
second evaluations

Table 1 Exclusionary criteria established in the study.

Exclusionary criteria
Family history of first-degree alcoholism or substance abuse
Personal history of psychopathological disorders (according to

DSM-IV criteria)
Family history of major psychopathological disorders in first

degree relatives
Use of illegal drugs (except cannabis)
Episode of loss of consciousness for more than 20 minutes
History of traumatic brain injury or neurological disorder
Non-corrected sensory deficits
AUDIT scores � 20

AUDIT: Alcohol Use Disorders Identification Test.

Table 2 Demographic and drinking characteristics of the control and binge drinking (BD) groups (mean � standard deviation).

First evaluation Second evaluation

Controls Binge drinkers Controls Binge drinkers

n (females) 25 (14) 23 (10) 25 (14) 23 (10)
Age 18.6 � 0.5 18.8 � 0.5 20.3 � 0.5 20.7 � 0.6
Handedness (right/left) 23/2 22/1 23/2 22/1
Caucasian ethnicity (%) 100 100 100 100
Regular tobacco smokers 0 2 1 4
Occasional tobacco smokers 2 5a 1 8a

Regular use of cannabis 0 4a 0 0
Occasional use of cannabis 2 11a 1 13b

Age of onset on drinking 15.7 � 0.9 14.6 � 1.4a 15.7 � 0.9 14.6 � 1.4a

Drinks in a standard week 2.4 � 3.4 13.2 � 11.3b 2.7 � 2.2 14.3 � 5.9b

Times consuming six or more drinks per month 0 � 0.1 2.8 � 1.5b 0.1 � 0.3 2.9 � 1.9b

Percentage drunkenness 11.5 � 19.5 55.4 � 39.5b 16.8 � 26.3 52.5 � 26.2b

Total AUDIT score 2.6 � 2.3 12.1 � 3.9b 2.6 � 2.4 10.7 � 2.7b

at < 0.05 significant group differences; bt < 0.001 significant group differences. AUDIT: Alcohol Use Disorders Identification Test.
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Data analysis

Behavioural analysis

Only responses occurring between 100 and 1000 ms
after the onset of a Go stimulus were considered to be
correct responses. The no-responses to NoGo stimuli were
rated as correct inhibitions. Reaction times (RT) and per-
centage of correct responses and inhibitions were analy-
sed by analysis of variance (ANOVA).

ERP analysis

The EEG data were analysed with BrainVision Analyzer
software (version 2.0.1). The EEG was corrected for
ocular artefacts [51], filtered digitally with a 0.1–30 Hz
bandpass filter, segmented into epochs of 1000 ms
(100 ms pre-stimulus to 900 ms post-stimulus) and
baseline-corrected. Epochs exceeding �80 mV at any
scalp electrode were rejected and those corresponding to
incorrect responses (omissions or false alarms) were
excluded.

The ERPs were examined by temporal principal com-
ponents analysis (tPCA) to ensure correct identification of
the P3 component [52,53]. A covariance matrix-based
tPCA was applied separately for both conditions (Go and
NoGo). Ten factors, which accounted for 94.2 and 90.9%
of the variance of the Go and NoGo conditions, res-
pectively, were selected. Extracted factors were then
submitted to Promax rotation. The temporal and spatial
characteristics of the components indicated that, for the
Go condition, factor 1 corresponded to the Go-P3 compo-
nent, and for the NoGo condition factor 2 corresponded
to the NoGo-P3 component (Fig. 2).

The factor scores corresponding to Go-P3 and
NoGo-P3 components were categorized into three
regions, each including six electrode positions: frontal
(F3-Fz-F4-FC3-FCz-FC4), central (C3-Cz-C4-CP3-CPz-

CP4) and parietal (P3-Pz-P4-PO3-POz-PO4). A repeated-
measures ANOVA with two between-subject factors
(group: BD and control; gender: male and female) and
two within-subject factors (region: frontal, central and
parietal; electrode: six channels) was used to analyse
each component (alpha level �0.05). All post-hoc paired
comparisons were performed with the Bonferroni adjust-
ment for multiple comparisons, also with an alpha level
of 0.05.

eLORETA analysis

eLORETA was used to estimate the cerebral origin of
scalp-recorded electrical activity related to the P3 compo-
nent derived from tPCA for Go and NoGo trials. eLORETA
images represent the electric activity at each voxel in the
neuroanatomic Montreal Neurological Institute (MNI)
space as the exact magnitude of the estimated current
density [54].

Voxel ¥ voxel between-group comparisons of the
Go-P3 and NoGo-P3 current density distribution were
performed. To identify possible between-group differences
in the brain electrical activity in Go or NoGo trials, non-
parametric statistical analyses of functional eLORETA
images (statistical non-parametric mapping; SnPM) were
performed, with a t-test for independent groups. The
results correspond to maps of t-scores for each voxel for
corrected P < 0.05.

RESULTS

Behavioural performance

Behavioural results are summarized in Table 3. There
were no significant differences between the control and
the BD group, or between genders, for any of the variables

Figure 2 (a) Factor loadings of the ten temporal factors extracted during the Go condition for both the first and second evaluations. Factor
1, associated with the Go-P3 component, is shown as a solid line. (b) Factor loadings of the 10 temporal factors extracted during the NoGo
condition for both first and second evaluation. Factor 2, associated with NoGo-P3 component, is shown as a solid line
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analysed (RT and percentage of correct responses and
inhibitions) in either of the evaluations.

Electrophysiological results

The grand averages of the ERPs for each group are shown
in Figs 3 (first evaluation) and 4 (second evaluation). The
components derived from tPCA are shown in Fig. 2.

Analysis of the Go-P3 component in the first
and second evaluations revealed significant differences
between the groups (F(1,44) = 5.91; P = 0.019), with
higher factor scores in the BD group but no differences
between genders. Independent analysis for each evalua-
tion moment confirmed that these differences were
significant in both the first and the second assessments.
The analysis also revealed significant differences between
regions (F(2,88) = 44.41; P < 0.001), with higher factor
scores in the parietal and central regions (P < 0.001).
Although there were no significant interactions involv-
ing region, separate analyses were performed for each,
revealing that the differences between the two groups
were significant in the central (F(1,44) = 6.33, P = 0.016)
and the parietal (F(1,44) = 5.69; P = 0.021) regions.

Analysis of the NoGo-P3 component in the first and
second evaluations also revealed significant differences
between groups (F(1,44) = 9.33; P = 0.004), but not
between genders. However, after independent analysis for
each evaluation moment, the differences were significant
in the second (F(1,44) = 11.12; P = 0.002) but not in the
first assessments. No differences regarding the region
factor were found in this component. Separate analyses
for each region in the second evaluation showed
significant differences between groups at the three
regions: frontal (F(1,44) = 12.02; P = 0.001), central
(F(1,44) = 11.69; P = 0.001) and parietal (F(1,44) = 7.47;
P = 0.009).

Identical analyses were applied to the N2 component,
and there were no significant effects or interactions
involving the group factor in either of the two conditions.

eLORETA results

Analysis of the current density distribution revealed
significant differences between groups only in the second
evaluation, and only for the NoGo trials. Signifi-
cantly greater activation was observed in the BD than in
the control group for the NoGo stimuli, essentially in
the right inferior prefrontal gyrus and the insula. The
eLORETA maps (SnPM) comparing the neuroelectrical
activity of the BD and control groups for NoGo-P3 are
shown in Fig. 5. The three-dimensional image of this
topographic distribution, along with the centre of NoGo
focus observed by Konishi et al. [55], is shown in Fig. 6.
Those brain regions for which the SnPM t-scores for inde-
pendent groups were significant are listed, along with the
MNI coordinates, in Table 4.

DISCUSSION

By measuring ERPs, the present study examined possible
anomalies in prefrontal activity in young BDs during per-
formance of a Go/NoGo task. Although there were no
behavioural differences between BD and control groups,
statistical analysis of the Go and NoGo-P3 components
revealed that: (i) the BDs displayed a significantly larger
NoGo-P3 amplitude than the controls in the second
evaluation as well as a significantly larger Go-P3 ampli-
tude in both first and second evaluations; and (ii) the rIFC
was significantly more active during successful inhibition
in BDs than in controls in the second evaluation.

Neurocognitive impairments in adolescents and
young people derived from alcohol abuse have been
observed repeatedly [56]. However, studies of adolescent
and young BDs are scarce and the consequences of this
pattern are somewhat unclear. Studies focusing on this
issue show that BDs perform poorly in tasks involving
prefrontal and hippocampal activity [19–26]. In particu-
lar, with regard to inhibitory control processes, Townsh-
end & Duka observed that young female BDs were unable
to inhibit their response to alerting stimuli in a vigilance
task, which was interpreted as a sign of deficit in
frontal inhibitory control [21]. Nevertheless, it remains
unclear whether these abnormalities in performance
reflect underlying neural impairments.

In this sense the present results suggest that, in addi-
tion to the dysfunctions observed in neuropsychological
tests in other studies, BDs also show neural anomalies
liable to be observed by ERPs. The main anomaly inden-
tified in this study was the increased amplitude of the P3
component in both conditions (Go and NoGo). Taking
into account that the total amount of P3 activity re-
presents the sum of the outputs derived from different
sources or generators [57], the larger P3 amplitude in the
BDs may be due to additional neural recruitment (or

Table 3 Behavioural data concerning the control and binge
drinking (BD) groups in the two evaluations (mean � standard
deviation).

Behavioural performance Controls Binge drinkers

First evaluation
Response time (ms) 524.22 � 142.83 528.68 � 138.61
% Correct responses 94.03 � 4.85 94.60 � 4.44
% Correct inhibitions 95.77 � 5.05 96.81 � 3.11
Second evaluation
Response time (ms) 518.96 � 132.01 519.29 � 131.14
% Correct responses 95.68 � 4.87 96.85 � 3.01
% Correct inhibitions 96.55 � 4.28 97.42 � 2.60
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greater activation of the engaged neural groups) required
to resolve the task efficiently.

These results suggest that BD during adolescence
and youth may induce disturbances in neural activity.
Furthermore, they show that some disturbances may
persist (increase in Go-P3 amplitude), whereas others
may emerge (increase in NoGo-P3 amplitude) if con-
sumption continues for a period of more than 2 years.

The involvement of the rIFC in the neural circuitry
of response inhibition has been documented widely in
neuroimaging studies with Go/NoGo and other tasks
[58–61], and verified in lesion, TMS and animal studies
[62–66]. Similarly, the eLORETA results also showed
a clear relation between rIFC and inhibitory control
(Fig. 6). Specifically, greater activation of this region
during successful inhibition was observed in youths who

Figure 3 Grand averages of event-related
potentials from the control (solid line) and
binge drinking (dashed line) group, derived
from Go and NoGo trials during the first
evaluation. Averages are presented for Fz,
FCz, Cz, CPz and Pz electrodes
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engaged in BD for at least 2 years, relative to aged-
matched controls. This greater neural activation may
reflect a compensatory neurofunctional mechanism
which would allow BDs to maintain similar task per-
formance as controls, even though the neural system
responsible for implementing such action may be
compromised.

The greater neural activity in certain areas of the
cortex in alcohol-using youths is not a new phenomenon,
as has been reported in fMRI studies of BD and AUD suf-
ferers [67–70]. Regarding BD, the only two studies which,
to our knowledge, have used this technique showed that
the adolescent BDs exhibited over-activation of frontopa-
rietal systems, as well as hypoactivation of several areas

Figure 4 Grand averages of event-related
potentials from the control (solid line) and
binge drinking (dashed line) group, derived
from Go and NoGo trials during the
second evaluation. Averages are presented
for Fz, FCz, Cz, CPz and Pz electrodes
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of the frontal and occipital cortex during the learning of
new word pairs [69,70]. The authors proposed that these
findings were suggestive of the use by BDs of alternative
memory systems during verbal learning and, more spe-
cifically, that the increased right prefrontal activation
may partly reflect an increased effort to suppress irrel-
evant information [69].

Similar results have been reported in a recent ERP
study by our research group, in which a larger N2 ampli-
tude was observed in adolescent BDs during a visual
identical-pairs continuous performance task [71]. The
increased amplitude was also interpreted as indicative of
greater attentional effort to perform the task adequately.

Similarly, an fMRI study conducted by Pfefferbaum
and colleagues reported that chronic alcoholic adults
showed increased activity in the rIFC during performance
of a spatial working memory task; the authors inter-
preted this as reflecting a greater effort in invoking
response inhibition by the alcoholics when suppressing
non-relevant information [72].

Together, these results suggest that: (a) BDs may be
vulnerable to neurofunctional impairments related spe-
cifically to the PFC (a class of impairment largely reported
in chronic alcoholics [73,74]), and (b) hyperactivation
of certain cortical areas may reflect a compensatory
mechanism activated in the BDs’ brains to perform effi-
cient inhibitory control.

Nevertheless, some aspects of this interpretation must
be considered further. On one hand, chronic abstinent
alcoholics have been reported frequently to display
decreased P3a and P3b amplitudes during performance
of auditory and visual tasks [75–77]. However, the fact
that these abnormalities do not recover to normal values

after long periods of abstinence [78,79], along with the
finding that low P3 is also observed in children of alco-
holics prior to any alcohol exposure [76,80], have led to
the hypothesis that the P3 deficits may precede develop-
ment of alcoholism, rather than being a consequence
of it [81,82]. Considering P3 reduction as a genetic risk
marker for alcoholism may explain why an ERP study of
young BDs, which included subjects with FHA, reported
reduced P3 amplitude [83]. In the present study, in which
subjects with FHA were excluded and participants did
not display any signs of AUD, no anomalous ERP prior to
consumption was expected. Therefore, there is no strong
support for the possibility that the BDs consume alcohol
to compensate a neurophysiological anomaly and that
the increased Go and NoGo-P3 is a transient effect of this
alcohol consumption.

Another important issue is the possibility that the
anomalous activation observed in the BDs is related to
working memory (WM) rather than to inhibition. It is
well known that WM involves rIFC activation [84,85],
and it is also true that the Go/NoGo task used in the
present study involves an important WM load to discrimi-
nate between Go and NoGo trials. None the less, if the
anomalous increased activity found in rIFC in BDs were
related to WM, it would be expected to be present for both
the Go and the NoGo stimuli, so that both involve the
same WM effort. The e-LORETA results, indicating that
the difference from control subjects emerge only for the
NoGo stimuli, led us to interpret this in terms of inhibi-
tion, and not as a WM process.

On the other hand, one noteworthy aspect of the
present study is the fact that the maintenance of a BD
pattern for several years appears to lead to an increase in

Figure 5 Exact low-resolution tomography analysis (eLORETA)-based statistical non-parametric maps (SnPM), comparing the exact current
density values between control and binge drinking subjects during response inhibition for the NoGo-P3 component. Significantly greater
activation (corrected P < 0.05) in binge drinkers relative to controls is shown in blue. L: left; R: right; A: anterior ; P: posterior
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Table 4 Summary of the brain areas associated with the NoGo-P3 component with significantly higher activation in the binge
drinkers relative to controls in second evaluation.

Anatomical regiona Brodmann area MNI coordinates (x, y, z) t-score

Inferior frontal gyrus 13 45, 25, 10 -4.43213**
45, 25, 10 -4.41871**

45 50, 25, 10 -4.38060**
40, 20, 5 -4.36656**
55, 25, 10 -4.29541**
35, 25, 5 -4.27748**
45, 20, 5 -4.26735**
40, 20, 10 -4.18929**
45, 20, 10 -4.17791**
55, 30, 15 -4.15459**
50, 20, 10 -4.13146**
55, 25, 15 -4.12537**
50, 20, 5 -4.12045**
55, 25, 5 -4.11050**
55, 20, 10 -4.05311**
55, 20, 5 -3.94199*
60, 20, 15 -3.92404*
55, 20, 15 -3.85419*
55, 30, 20 -3.84672*
55, 30, 5 -3.83728*
50, 20, 15 -3.75153*
55, 25, 20 -3.71946*
45, 20, 15 -3.60448*
50, 25, 20 -3.58256*
60, 20, 20 -3.54531*

46 45, 30, 15 -4.04154**
50, 30, 20 -3.76249*

47 40, 20, 5 -4.31148**
50, 25, 5 -4.22008**
40, 20, 0 -4.15372**
45, 20, 0 -4.04818**
35, 25, 0 -4.02981**
40, 25, 0 -4.02835**
35, 20, -5 -3.90584*
50, 25, 0 -3.88982*
50, 20, 0 -3.88787*
30, 20, -5 -3.87844*
55, 25, 0 -3.74679*
55, 20, 0 -3.63869*
35, 20, -10 -3.63495*
40, 25, -10 -3.63442*
50, 20, -5 -3.63411*
30, 20, -10 -3.58839*
45, 25, -10 -3.57927*
45, 20, -10 -3.53804*
25, 25, -10 -3.52889*
40, 25, -15 -3.50970*

Insula 13 35, 20, 5 -4.40223**
35, 20, 10 -4.14922**
30, 25, 0 -4.00446**
40, 15, 5 -3.62331*
35, 15, 0 -3.59755*
45, 15, 5 -3.52917*
40, 15, 0 -3.50679*

45 30, 25, 5 -4.19978**
Extra-nuclear 47 35, 20, 0 -4.19772**
Precentral gyrus 44 60, 20, 10 -4.05834**
Middle frontal gyrus 46 45, 30, 20 -3.64288*
Subcallosal gyrus 11 10, 25, -10 -3.49176*

aAll the anatomical regions are located in the right cortex. *Corrected P < 0.05; **corrected P < 0.01. MNI: Montreal Neurological Institute.
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neural anomalies in youths. To our knowledge, only one
other study has assessed the effects of the duration of BD
[86]. In that study, Maurage and colleagues found that,
after 9 months of BD, youths presented delayed latencies
in P1, N2 and P3 components elicited by emotional audi-
tory stimuli, without any behavioural differences from
controls. The authors interpreted these results as indi-
cating slowed cerebral activity in the BDs after several
months of consumption. In addition, neuropsycholo-
gical studies with alcohol-dependent adolescents have
reported a positive relation between life-time alcohol
episodes and the magnitude of neurocognitive deficits
[87]. As in these studies, the present results appear to
show that the longer the BD pattern of consumption is

maintained, the greater the expression of neurophysi-
ological anomalies.

Finally, inhibitory control impairment has been indi-
cated as a risk factor for substance abuse [88,89]. Thus,
the anomalies in the rIFC reported here may represent
a neural antecedent of posterior difficulties in impulse
control (and therefore in control of alcohol consumption)
in youths who have maintained a BD pattern for several
years. However, this possibility must be tested in more
extensive follow-up studies.

In summary, the present results indicate that, despite
similar levels of behavioural performance in the groups,
young BDs manifest anomalous neural activity, as dem-
onstrated by increased P3 amplitude during response
execution and inhibition in a Go/NoGo paradigm. The
electrophysiological anomalies during response inhibi-
tion appear only after the subjects engage in a BD pattern
for at least 2 years, and are associated with hyper-
activation of the rIFC, which may suggest activation of
additional neural mechanisms to compensate emerging
functional alterations in the regions engaged in inhibi-
tory control.
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