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Introduction
Alcohol is the most widely used psychoactive substance in  
the world (World Health Organization, 2014). Binge drinking 
(BD), formally defined as the consumption of five or more 
drinks for men and four or more for women on the same occa-
sion within a two-hour interval (Courtney and Polich, 2009; 
National Institute of Alcohol Abuse and Alcoholism, 2004), is a 
highly prevalent pattern of alcohol consumption in adolescents 
and young people in most Western countries. As such, around 
one out of three young Europeans and North Americans  
are BDs (29% of Europeans aged 15–25 years and 39% of 
North Americans between 18–25 years) (Eurobarometer, 2010; 
Substance Abuse and Mental Health Services Administration, 
2013), and this has been associated with major social and health 
consequences such as unsafe sexual activity, motor vehicle 
crashes, violent behaviour, poor school performance, increased 
risk for cardiovascular impairments and hepatic injury, etc. 
(Brewer and Swahn, 2005; Goslawski et al., 2013; Llerena 
et al., 2015; Miller et al., 2007; Naimi et al., 2003; Valencia-
Martín et al., 2008).

Adolescence and youth are periods of critical development in 
which the brain undergoes significant structural and functional 
changes (Casey et al., 2010; Giedd and Rapoport, 2010). These 
transformations in functioning and brain morphology mainly 
involve the prefrontal cortex (PFC) and other high-order asso-
ciation areas (Gogtay et al., 2004; Lebel and Beaulieu, 2011) 
and have been linked to meaningful enhancements in several 
cognitive processes such as attention, working memory, inhibitory 

control or decision making (Blakemore and Robbins, 2012; 
Hooper et al., 2004; Luna and Sweeney, 2004; Velanova et al., 
2009; Yurgelun-Todd, 2007). Consequently, alcohol consump-
tion during these periods of transition to adulthood is of particu-
lar concern given that excessive drinking might disrupt the 
neuromaturational processes of regions that are still maturing 
and therefore impair the cognitive functions partially supported 
by them (Squeglia et al., 2009).

Inhibitory control, i.e. the ability to suppress inappropriate 
responses or impulsive reactions with the aim of monitoring 
behaviour according to long-term goals (Allom et al., 2015; 
Diamond, 2013), deserves special attention given that this cogni-
tive function has been related to individuals’ capacity to regulate 
alcohol consumption (Fillmore, 2003; Smith et al., 2014). Indeed, 
weak inhibitory control may predispose individuals to develop 
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addictive behaviours, including alcohol abuse (López-Caneda 
et al., 2014a; Perry and Carrol1, 2008). Specifically, poor response 
inhibition has been associated with BD in young social drinkers 
(Henges and Marczinski, 2012) as well as with more alcohol-
related problems and greater risk of alcohol dependence in ado-
lescents (Nigg et al., 2006; Rubio et al., 2008). Likewise, acute 
alcohol intake may lead to impulse control deficits (Loeber  
and Duka, 2008; Rose and Duka, 2007) as well as to disruptions 
in brain functioning related to inhibitory control (Euser and 
Franken, 2012; Nikolaou et al., 2013).

Young BDs have also shown lower performance on neu-
ropsychological tests assessing inhibitory ability compared to 
age-matched controls (Czapla et al., 2014; Poulton et al., 2016). 
At the same time, electroencephalographic (EEG) recordings 
during Go/NoGo and Stop Signal tasks point to abnormalities in 
the event-related potentials (ERPs) linked to response inhibition 
in social and heavy drinkers (López-Caneda et al., 2012, 2014b; 
Petit et al., 2012; Smith and Mattick, 2013). These anomalies 
affect essentially the NoGo-P3 component, a positive waveform 
occurring between 300–700 ms after stimulus onset that has a 
maximum amplitude at fronto-central sites and has been func-
tionally associated with response inhibition (Kok et al., 2004; 
Wessel and Aron, 2015). Thus, heavy social drinkers exhibited 
delayed NoGo-P3 latencies in alcohol-related contexts, which 
was considered an index of prioritising processing related to 
alcohol that might lead to inhibitory deficits (Petit et al., 2012). 
Furthermore, binge drinkers also showed increased amplitude in 
NoGo-P3 and Stop-P3 (an analogous component to NoGo-P3 
evoked during the Stop Signal task), suggesting the activation of 
additional/compensatory neural resources that would allow binge 
drinkers to efficiently carry out the response inhibition (López-
Caneda et al., 2012; Smith and Mattick, 2013).

There is considerable evidence suggesting that ERP wave-
forms emerge from superimposed neuroelectric oscillations 
induced by sensory or cognitive processes framed within dynamic 
ongoing EEG activity (Karakaş et al., 2000; Klimesch et al., 
2004). These oscillations, when analysed in the context of stimu-
lus-related brain function, are frequently called event-related 
oscillations (EROs). The study of EROs enables the measure-
ment (frequency-specific) of oscillatory activity in neural circuits 
that is temporally related to the sensory and cognitive processing 
of stimuli (Başar et al., 2001a). EROs are commonly classified 
according to the ‘natural frequencies’ of the brain (Başar et al., 
2001b), i.e. delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), 
beta (12–30 Hz) and gamma (30–70 Hz). Despite their functional 
meanings often being task-specific, certain frequency bands 
within oscillatory responses may underlie different cognitive 
functions. In particular, research has shown a close relationship 
between delta and theta responses and inhibitory control pro-
cesses evoked during the Go/NoGo paradigm (Harper et al., 
2014, 2016; Kirmizi-Alsan et al., 2006; Lavallee et al., 2014; 
Yamanaka and Yamamoto, 2010). However, the relationship 
between delta and theta oscillations and cognitive functions are 
not exclusive to response inhibition, as they have also been asso-
ciated with a myriad of other cognitive processes such as percep-
tion, attention, error monitoring, memory and decision making 
(Cohen et al., 2009; Güntekin and Başar, 2016; Sauseng et al., 
2010; Yordanova et al., 2004).

EROs have been shown to be sensitive to both normal and 
abnormal cognitive functioning in humans (Başar and Güntekin, 

2013). Regarding alcoholism, several studies have reported 
attenuated delta and/or theta oscillations in alcohol-dependent 
patients during Go/NoGo tasks to both Go and NoGo stimuli, 
which has been interpreted as reflecting deficient inhibitory and 
attentional processing (Colrain et al., 2011; Kamarajan et al., 
2004; Pandey et al., 2016). However, even though oscillatory 
responses have proven to be a useful tool for studying the neu-
ral response linked to inhibition in alcoholics, and that neural 
oscillations during resting states have been shown to be sensi-
tive to the BD pattern (Correas et al., 2015, 2016; Courtney and 
Polich, 2010), to our knowledge there is no study that has eval-
uated EROs in young binge drinkers. Bearing this in mind, the 
objective of this study was to determine whether young binge 
drinkers would also exhibit impairments in oscillatory signals, 
particularly in delta and theta frequencies within the time win-
dow corresponding to Go- and NoGo-P3 components, i.e. the 
electrophysiological signals linked to execution and inhibition 
of a motor response. Furthermore, although our primary interest 
was in the EROs, we also examined the Go-P3 and NoGo-P3 
signals of the ERPs in order to compare time-domain and fre-
quency-domain measures.

Given that this is the first study that directly compares EROs 
in these two groups, our a priori hypothesis is based on the 
results from alcohol-dependent subjects. Thus, we hypothesise 
that delta/theta oscillations linked to response inhibition will be 
modulated by the BD pattern. Specifically, we predict that 
young BDs will display reduced oscillatory activity in delta/
theta frequency ranges during response inhibition processes as 
compared to age-matched controls with low or no alcohol 
consumption.

Materials and methods

Participants

Seventy-two students from the Complutense University of 
Madrid (Spain) participated in the study. Participants were 
selected on the basis of their responses to a questionnaire that 
included the Spanish validated version of the Alcohol Use 
Disorder Identification Test (AUDIT) (Guillamón et al., 1999). 
Participants were asked to keep a record of daily alcohol con-
sumption by indicating the type of drink, the quantity and the 
intensity of drinking. Blood alcohol concentration (BAC) was 
calculated based on the information of the drinking episodes of 
the last six months according to the following formula:

BAC
G

W bw
mr DP=

×






 − ×

where G corresponds to the number of grams of alcohol con-
sumed on one occasion (the occasion of greatest consumption in 
the last month); W is body weight (kg); bw or body water is a 
constant related to the water content of the human body, with 
value 0.68 for males and 0.55 for females; mr is the metabolisa-
tion rate with a value of 0.15 for males and 0.18 for females; and 
DP is the drinking period in hours. Taking into account the 
National Institute of Alcohol Abuse and Alcoholism (NIAAA)’s 
BD definition, where ‘a binge is a pattern of drinking alcohol that 
brings BAC to 0.08 grams per cent or above’ (NIAAA, 2004), 
participants reaching BAC⩾0.08 g/dL at least once during the 
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last month were classified as BDs. On the other hand, the control 
group consisted of students who have never reached an alcohol 
concentration of 0.08 g. Consequently, 36 participants were 
classified as BDs (19 females) and 36 as controls (16 females); 
20 of the controls (eight females) were abstainers.

Impulsivity was assessed by the Barratt Impulsiveness 
Scale (BIS-11; Patton et al., 1995) and psychopathological 
symptoms were measured by the Symptom Checklist-90 
revised questionnaire (SCL-90-R; Derogatis, 1983). Likewise, 
participants were questioned about their use of other drugs 
such as tobacco, cannabis, cocaine, amphetamines and ecstasy 
3,4-Methylenedioxymethamphetamine (MDMA).

Exclusion criteria were: non-corrected sensory deficits, any 
episode of loss of consciousness for more than 20 min, history of 
traumatic brain injury or neurological disorder, personal history 
of psychopathological disorders according to the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-IV-TR; American 
Psychiatric Association, 2000), family history of alcoholism or 
substance abuse in first degree relatives, consumption of medical 
drugs with psychoactive effects (e.g. sedatives or anxiolytics) 
during the week previous to the assessment, AUDIT scores ⩾20, 
and use of illegal drugs except cannabis.

Procedure

Participants were asked to abstain from consuming alcohol for at 
least 24 h before the experiment. They were submitted to a 
breathalyser test, and the assessment was only performed after 
verifying 0% breath alcohol level. Additionally, subjects were 
instructed not to smoke, or drink tea or coffee for at least three 
hours before the assessment.

Participants performed a Go/NoGo task. They were instructed 
to fixate on a small cross located centrally on a LCD monitor. 
Squares or circles (green or blue) with a visual angle of 3º×3º 
were equiprobably presented (50/50) during 100 ms in the centre 
of the screen with an 1100–1500 ms interstimulus interval (off-
set-onset). Figures were presented in a randomised order in two 
series of 200–225 stimuli for around four minutes each. Subjects 
had to press a button (50% with their right hand and the other 
50% with their left hand) as fast as possible to the Go trials (green 
circle and blue square) and not to respond to the NoGo trials 
(blue circle and green square).

All participants gave written informed consent and received 
monetary compensation for their participation. The experiment 
was undertaken in compliance with Spanish legislation and the 
Code of Ethical Principles for Medical Research Involving 
Humans Subjects outlined in the Declaration of Helsinki.

Data analysis

Analysis of behavioural and demographic data. Only 
responses occurring between 100–1000 ms after the onset of a Go 
stimulus were considered to be correct responses. No-responses to 
NoGo stimuli were scored as correct inhibitions. Reaction time 
(RT) and percentage of correct responses and correct inhibitions 
were analysed by a Student’s t-test for independent samples. The 
same statistical analysis was applied to demographic data.

EEG recording. The electroencephalogram was recorded using a 
64-channel ActiCap system (Brain Products, Munich, Germany). 

Electrodes were Ag/AgCl active electrodes with integrated cir-
cuit of noise suppression and they were located according to the 
10/10 system (American Clinical Neurophysiology Society, 
2006). All active electrodes were referred to the nose tip and 
grounded with an electrode placed at Fpz. Vertical and horizontal 
electrooculogram activity was recorded to control for potentials 
evoked by eye movements and blinks. According to impedance 
levels allowed by the ActiCap system, electrode impedances 
were kept below 20 kΩ. EEG signals were continuously ampli-
fied and digitised at a rate of 500 Hz, and filtered on-line with a 
0.01–100 Hz band-pass filter.

ERP analysis. For the ERP analysis, data were processed with 
BrainVision Analyser software (Version 2.1). The EEG signal 
was corrected for vertical and horizontal ocular artifacts by the 
procedure developed by Gratton et al. (1983). It was then digi-
tally filtered off-line with a 0.1–30 Hz band-pass filter and seg-
mented into epochs of 1000 ms (from −100 to 900 ms). Baseline 
correction was applied; epochs exceeding ±80 µV at any scalp 
electrode were rejected and EEG epochs corresponding to incor-
rect responses (omissions or false alarms) were excluded. The 
number of retained trials was similar across the two conditions 
(Go and NoGo) for both groups.

ERP waveforms were extracted by averaging across trials for 
each condition. The averaged ERPs were analysed with a semi-
automatic peak detection procedure and subsequently reviewed 
and manually corrected for each of the midline electrode sites of 
interest (MESOIs) (Andrew and Fein, 2010), these being Fz, 
FCz, Cz, CPz and Pz. The nature of the task (four different stim-
uli with equal probability for each of them) entails a noteworthy 
difficulty for response selection, which may lead to two P3 sub-
components (Falkenstein et al., 1994, 1995; Fox et al., 2000). In 
the present study we measured both early-P3 and late-P3. These 
subcomponents were identified in the averaged waveforms elic-
ited by Go and NoGo stimuli as the largest positive peak between 
300–450 ms (early-P3) and between 500–600 ms (late-P3) after 
stimulus onset. Amplitude (µV) and latency (ms) values of both 
components were obtained for each of the MESOIs. A mixed-
model analysis of variance (ANOVA) with two between-subject 
factors (Group: control and BDs; Gender: male and female) and 
two within-subject factors (Condition: Go and NoGo; Electrode: 
five MESOIs) was used to examine the data separately for each 
subcomponent (alpha level⩽0.05). Where appropriate, degrees 
of freedom were corrected by the Greenhouse-Geisser estimate, 
and post-hoc paired comparisons were performed with the 
Bonferroni adjustment for multiple comparisons, also with an 
alpha level⩽0.05.

Time-frequency analysis. Along with ERP analysis, time-fre-
quency analysis was carried out, which required some specific 
data pre-processing steps. For this analysis, the EEG signal was 
digitally filtered off-line with a 0.1–70 Hz band-pass filter and 
then corrected for ocular artifacts by the same procedure used for 
the ERPs. The EEG signal was re-referenced to the averaged ref-
erence and segmented into epochs of 2000 ms, from 500 ms pre-
stimulus to 1500 ms post-stimulus. Epochs exceeding ±80 µV at 
any scalp electrode were rejected and, as with the ERPs, EEG 
epochs corresponding to incorrect responses were excluded.

Time-frequency decomposition was performed on MATLAB 
R2015a (v8.5.0.197613, MathWorks) by first multiplying the 
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result of the fast Fourier transform (FFT) of the EEG data by the 
FFT of different complex Morlet wavelets, and then computing the 
inverse FFT (iFFT) of the result. Altogether, 32 Morlet wavelets 
were created in logarithmically spaced steps from 1–40 Hz, and 
with three cycles at the lowest frequency up to 10 at the highest 
frequency (also in logarithmically spaced steps). The iFFT yielded 
a complex estimate at each frequency f and time point t (with steps 
of 10 ms). To obtain the power spectrogram, the squared absolute 
value of the complex estimate in each tf point was computed. 
Resulting power values were normalised by transforming the 
power change of each tf point to dB, relative to the mean power in 
the baseline interval (from −300 to −100 ms) of each frequency, 
using the formula: dB = 10 log (signal / baselinetf 10 tf f )

where the bar over baseline indicates the mean of the baseline 
interval.

The resulting time-frequency values (total ERO power) were 
assessed statistically using the nonparametric cluster-based ran-
dom permutation method (Maris & Oostenveld, 2007). The clus-
tering used 4000 iterations and was performed on time-frequency 
data for each condition (Go and NoGo) and for each of the 
MESOIs included in the ERP analysis. To create a null-hypothe-
sis distribution, subjects were randomised across groups in each 
iteration, and then two-tailed independent samples t-tests were 
performed for each time-frequency point. The cluster with the 
maximum absolute sum of t-values among all significant (p<0.01) 
pixels was saved. When all permutations were completed, the 
t-values of the saved clusters were arranged in ascending order. A 
cluster was considered significant if the sum of t-values of sig-
nificant pixels in the real t-tests was below the 2.5 percentile or 
above the 97.5 percentile in the sorted permutation t-values.

Results

Demographic results

Demographic data are summarised in Table 1. There were no sig-
nificant differences between groups regarding age, handedness, 
regular use of cannabis (several times a week or every day), gen-
eral severity index (GSI) of the SCL-R or BIS-11 scores (neither 

in total scores nor in the three second order factors: attentional, 
motor and nonplanning). Groups differed significantly in total 
AUDIT score (p=0.001), age of onset of regular drinking 
(p<0.001) regular use of tobacco (several times a week or every 
day) (p<0.001) and BAC (p=0.001).

Behavioural results

Behavioural data are summarised in Table 2. Groups did not dif-
fer in any of the behavioural variables analysed (RT, percentage 
of correct responses and percentage of correct inhibitions).

ERP results

The grand averages of ERPs for each group in both conditions are 
shown in Figure 1. Analysis of the early-P3 amplitude showed 
significant effects for the Condition factor (F(1,68)=42.26, 
p<0.001), with larger amplitude in the Go than in the NoGo condi-
tion, and also for the Electrode factor (F(4,272)=56.53, p<0.001), 
with the largest amplitude at Pz. Analysis of P3 latency only 
showed significant effects for the Electrode factor (F(4,272)=8.15, 
p<0.001), with the shortest latency at CPz. Regarding the late-P3, 
amplitude analysis only revealed significant effects for the 
Condition (F(1,68)=4.3; p=0.042) and Electrode (F(4,272)=93.5; 
p<0.001) factors, showing larger amplitude in the Go than in the 
NoGo condition and the largest amplitude at Pz. Significant 
effects were also found in the latency analysis for the Condition 
(F(1,68)=4.42; p=0.039) and Electrode (F(4,272)=4.23; p=0.002) 
factors, showing longer latencies in the Go than in the NoGo con-
dition and the shortest latency at Pz. There were no main effects or 
interactions involving group or sex in either amplitude or latency 
for any of the two subcomponents.

Time-frequency results

The time-frequency representation and the energy curves for 
each group in both conditions are shown in Figures 2 and 3 
respectively. Statistical analysis showed significant differences 
between groups during the Go condition in central and parietal 
locations. Specifically, BDs displayed lower total power in 
delta and theta frequencies compared to controls at Cz 
(p=0.022; time window=260–660 ms; frequency range=2.8–
8.0 Hz) and Pz (p=0.013; time window=440–900 ms; fre-
quency range=2.3–5.5 Hz) electrodes. Regarding the NoGo 
condition, significant effects were found in frontal and parietal 
locations. Specifically, BDs exhibited lower delta and theta 
power than controls at Fz (p=0.004; time window=350–820 
ms; frequency range=1.9–4.5 Hz) and Pz (p=0.002; time win-
dow=350–900 ms; frequency range=2.6–7.3 Hz) electrodes.  

Table 1. Demographic and drinking characteristics of the control and 
binge drinking groups.

Controls Binge drinkers

n (females) 36 (19) 36 (16)
Age 18.08 ± 0.28 18.08 ± 0.28
Handedness (right/ambidextrous/left) 32/3/1 33/2/1
Caucasian ethnicity (%) 100 100
Regular tobacco smokers 0 6a

Regular use of cannabis 0 0
Age of onset of regular drinking 16.56 ± 1.12 14.72 ± 1.18a

BAC in a drinking day (g/dL) 0.01 ± 0.02 0.17 ± 0.09a

BIS-11 total score 60.19 ± 8.73 63.25 ± 9.12
GSI score 0.30 ± 0.17 0.30 ± 0.14
Total AUDIT score 0.94 ± 1.44 7.44 ± 1.29a

AUDIT: Alcohol Use Disorder Identification Test; BAC: blood alcohol concentra-
tion; BIS: Barratt Impulsiveness Scale; GSI: general severity index.
ap⩽0.05 significant differences between groups.

Table 2. Performance scores in the control and binge drinking groups 
(mean±standard deviation (SD)).

Behavioral performance Controls Binge drinkers

Response time (ms) 489.8 ± 49.19 512 ± 60.06
% Correct responses 95.93 ± 5.42 95.14 ± 3.96
% Correct inhibitions 90.79 ± 5.42 92.28 ± 5.65
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In both conditions, the significant clusters showed maximal 
differences within the time range corresponding to Go-P3 and 

NoGo-P3 components, i.e. around 300–700 ms after the  
Go/NoGo signal onset (see Figure 2).

Figure 1. Grand average of event-related potentials for control (blue line) and binge drinking (BD) (red line) groups in response to Go and NoGo 
stimuli. Averages are presented for Fz, Cz and Pz electrodes.

Figure 2. Time-frequency representation of Go and NoGo conditions for control and binge drinking (BD) groups at Cz and Pz (Go condition) and 
Fz and Pz (NoGo condition) electrodes. The area embedded within each frame represents the frequency ranges and the time window that showed 
significant between-group differences.
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Discussion
This is the first study to examine oscillatory brain activity in 
young people with a BD pattern of alcohol consumption. Results 
reveal that BDs showed significantly lower delta and theta 
EROs during Go and NoGo conditions in comparison with the 
control group. These differences were localised in central and 
parietal regions for Go trials and in frontal and parietal regions 
for NoGo trials.

The results of the present study are consistent with previous 
ERO studies in chronic alcoholics during visual Go/NoGo tasks 
(Colrain et al., 2011; Kamarajan et al., 2004; Pandey et al., 2016), 
where significant differences between healthy controls and  
alcohol-dependent patients were observed in delta and theta 
oscillations during Go and NoGo conditions. In the first study, 
Kamarajan et al. (2004) reported reduced delta and theta oscilla-
tory activity in abstinent chronic alcoholics that was more promi-
nent in NoGo trials in the frontal region. The authors proposed 
that this decrease might be indicative of disruption of the neural 
circuit responsible for inhibitory control and that this deficit 
might constitute an endophenotypic marker for alcoholism. 
Another study from the same research group showed lower 
evoked delta, theta and alpha power in alcoholics compared to 
controls for Go and NoGo stimuli (Pandey et al., 2016). Again, 
the results were interpreted as suggestive of neurofunctional defi-
cits during inhibition and execution of a response. Finally, 
Colrain et al. (2011) observed attenuated delta oscillations in 
alcoholics during response inhibition, which was related to 
reduced white matter integrity in the cingulate bundles. According 
to the authors, the lower delta power observed in alcoholics com-
pared to controls might emerge as a consequence of degradation 
of fronto-parietal pathways involved in inhibitory processing.

The present data examining EROs in young BDs extend pre-
vious findings reported in abstinent chronic alcoholics given that 
BDs, similarly to alcohol-dependent patients, displayed decreased 
delta and theta activity associated with response inhibition and 
response activation. Regarding these frequency bands, it has 
been argued that it is not possible to assign a single function to a 
given type of oscillatory activity since brain functions arise from 
series of superimposed oscillations in different frequency ranges 
(Başar et al., 2001a; Sauseng et al., 2007). Thus, delta and theta 
oscillations have been linked to multiple processes including 

perception, attention, signal detection, error monitoring, reward 
processing, memory, inhibition and decision making (Başar-
Eroglu and Demiralp, 2001; Cohen et al., 2009; Güntekin and 
Başar, 2016; Marco-Pallarés et al., 2008; Sauseng et al., 2010; 
Yamanaka and Yamamoto, 2010; Yordanova et al., 2004). Even 
so, a number of studies have demonstrated that these frequency 
bands play an important and definite role in inhibitory control 
processes. Accordingly, increased delta and/or theta power has 
been reported for successful compared to failed inhibitions 
(Wessel and Aron, 2013, 2014) for withholding compared to 
execution of a response (Lavallee et al., 2014; Nigbur et al., 
2011), as well as when a greater number of preceding Go stimuli 
are presented before the NoGo stimuli, which involve greater 
inhibitory effort (Harper et al., 2016). Likewise, delta and/or 
theta oscillations elicited by NoGo stimuli are reduced in sub-
jects with high-risk for different disinhibitory spectrum disorders 
such as attention-deficit/hyperactivity disorder (Krämer et al., 
2009) or alcoholism (Kamarajan et al., 2006), suggesting that 
weaker low-frequency oscillations linked to response inhibition 
may predispose individuals to develop alcoholism and/or other 
disinhibitory disorders.

Based on these findings and the results reported from studies 
on alcohol-dependent patients, it can be suggested that the 
reduced delta and theta power observed in the present study 
may reflect deficient oscillatory activity in young BDs during 
response inhibition. Furthermore, the finding that group differ-
ences were mostly detected within the time window corre-
sponding to the NoGo-P3 – a component typically associated 
with motor inhibition (Smith et al., 2008; Wessel and Aron, 
2015) – along with the fact that only the NoGo condition 
showed significantly lower delta and theta power in BDs com-
pared to controls at the frontal region – the main region engaged 
in inhibitory control processes (Wiecki and Frank, 2013) – 
seems to strengthen the hypothesis that BD may be associated 
with functional anomalies in the neural oscillations linked to 
inhibitory responses.

Furthermore, this study has also shown abnormal oscillatory 
delta and theta activity in young BDs during response execution. 
Delta and theta power reductions in Go trials were localised in 
central and parietal sites and were maximal within the time 
range of Go-P3. These frequency bands have been considered 
the major contributors to the P3 signal (Başar-Eroglu et al., 

Figure 3. Energy curves of delta and theta power during Go and NoGo conditions. Curves correspond to the grand averages of the mean power 
values in delta and theta frequency bands. Data are presented for electrodes with significant between-group differences: Cz and Pz (Go condition); 
Fz and Pz (NoGo condition). BD: binge drinking.
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1992; Demiralp et al., 2001). Go-P3 is functionally equivalent 
to the P3b component typically obtained in oddball tasks, which 
has been related to target detection involving both attention  
and memory processing (Polich, 2007). Thus, ERO anomalies 
in delta and theta oscillations during the Go condition might 
suggest dysfunctions in neurophysiological mechanisms under-
lying attentional and working-memory processes, which is a 
common finding in chronic alcoholics (Jones et al., 2006; 
Pandey et al., 2016).

Likewise, several studies have demonstrated that BDs per-
form poorly in inhibition-related neuropsychological tests such 
as Go/NoGo (Czapla et al., 2014), Stop-Signal (Nederkoorn 
et al., 2009), Monetary Incentive Control (Poulton et al., 2016) 
and Stroop tasks (Hallgren et al., 2013), indicating weaker 
inhibitory ability in subjects with a BD pattern compared to age-
matched controls. In turn, some ERP studies evaluating inhibi-
tory control in young BDs seem to point to functional disruptions 
in the neural responses associated with response inhibition.  
As such, anomalies in latency (Petit et al., 2012) and amplitude 
(López-Caneda et al., 2012; Smith and Mattick, 2013) of 
NoGo-P3 and Stop-P3 have been observed in young binge and 
social drinkers while trying to withhold a response.

Nevertheless, not all studies conducted on BDs have found 
these effects, since some recent reports (using also a visual Go/
NoGo task) have failed to show group differences in these elec-
trophysiological components linked to inhibition and execution 
responses (Watson et al., 2014, 2016). The present study also 
failed to find differences in Go- and NoGo-P3 responses, i.e. 
these components seemed not to be significantly affected by 
BD, which is contrary to what was observed in a previous study 
from our laboratory with a different sample (López-Caneda 
et al., 2012). One possible explanation for the absence of sig-
nificant differences between groups in the Go- and NoGo-P3 
components concerns the fact that subjects in our first study had 
been drinking alcohol for a longer time than BDs of the present 
study. In this regard, anomalies in NoGo-P3 only emerged after 
more than two years maintaining the BD pattern (López-Caneda 
et al., 2012). Thus, it is possible that the present study has failed 
to show time-domain differences between groups because 
impairments in ERPs might not be apparent in early stages of 
BD. However, electrophysiological differences might emerge 
when frequency-domain measures are used. In this vein, studies 
on offspring of alcoholics and high-alcohol preferring mice 
have shown stronger differences between groups for ERO  
signals than for P3 amplitude (Criado and Ehlers, 2009; 
Rangaswamy et al., 2007), suggesting that ERO measures are a 
more stable and useful marker in the study of alcoholism and 
related disorders (Gilmore et al., 2010; Pandey et al., 2012). 
Altogether, it can be suggested that ERO analysis may be able 
to detect electrophysiological anomalies linked to BD in youths 
when performing a Go/NoGo task that are not identifiable by 
standard time-domain analyses.

An additional question that arises from the present results is 
why ERO measures might provide unique information beyond 
the ERP amplitude measures. While ERPs contain information 
about time- and phase-locked activity, total ERO power meas-
ures contain contributions from both phase-locked and non-
phase-locked activity and, consequently, provide independent 
information to that obtained from the ERP amplitude meas-
ures (Pfurtscheller and Lopes da Silva, 1999). Thus, these 

nonphase-locked oscillations – also known as induced activity 
or event-related synchronisation/desynchronisation (ERS/ERD) 
– which cannot be extracted by traditional time-domain analy-
ses, might account for the group differences observed in the  
present study. This possibility has been already reported from 
studies with alcohol-dependent patients and with offspring of 
alcoholics, from which has been proposed that ERO measures 
may provide additional or even more sensitive group discrimina-
tors than the ERPs (Andrew and Fein, 2010; Jones et al., 2006; 
Rangaswamy et al., 2007). However, further inquiries regarding 
EROs in the BDs population are required to address this issue.

Finally, this study has some limitations that require us to be 
cautious when interpreting the results. On one hand, the limited 
sample size (although suitable for an EEG study) could under-
mine the reliability of results. Therefore, additional research 
must be conducted in order to verify or refute the present results. 
On the other hand, the nature of this study does not allow us to 
determine whether these anomalies in EROs precede the BD pat-
tern or, conversely, arise as a consequence of heavy alcohol 
drinking. In this sense, studies on offspring of alcoholics have 
found that such high-risk youths exhibit decreased power in delta 
and/or theta bands during the Go/NoGo task (Kamarajan et al., 
2006), as well as during oddball (Rangaswamy et al., 2007) and 
gambling (Kamarajan et al., 2015) tasks, suggesting that these 
effects might constitute a biological marker of vulnerability to 
alcoholism, rather than being a consequence of alcohol consump-
tion. However, in the present study, in which individuals with a 
family history of alcoholism were excluded and where no differ-
ences were found among groups in impulsivity (as measured by 
BIS-11), no anomalous ERPs or EROs before the onset of alco-
hol consumption were expected, although longitudinal studies 
including future BDs without prior alcohol consumption are 
needed to test this hypothesis.

In summary, the present study is the first ERO study to report 
abnormal neural activity related to response execution and inhi-
bition during a Go/NoGo task in young BDs. Specifically, this 
study showed weaker oscillatory responses in delta and theta 
bands during both response inhibition and response execution in 
the BD group as compared to age-matched control group mainly 
within the time window of 300–700 ms post-stimulus. This find-
ing is congruent with previous ERO studies in chronic alcoholics 
using visual Go/NoGo tasks, where lower delta and/or theta 
oscillations were reported in alcohol-dependent patients com-
pared to healthy controls (Colrain et al., 2011; Kamarajan et al., 
2004; Pandey et al., 2016). Thus, BDs appear to show disruptions 
in neural oscillations similar to those observed in subjects with 
alcohol dependence. The reduced delta and theta EROs might 
reflect impairments in the neural circuit involved in both the acti-
vation and inhibition of a response. This outcome might consti-
tute a new manifestation of functional anomalies in inhibitory 
control and attentional/working memory processes in BDs, 
which could not be disclosed by means of traditional time-
domain methods. These findings are particularly valuable since 
they are the first to evidence that oscillatory brain activity may be 
a sensitive indicator of underlying brain anomalies in young 
BDs which could complement standard ERP measures.
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