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Abstract.
The pullback theorem for monads states that, given a monad T on a category E, the category

of T -algebras may be constructed by a certain pullback involving the category of free T -algebras, as
given below [1].

Alg(T ) [Kl(T )op,Set]

E [Eop,Set]

uT [kop
T ,Set]

yE

⌟

Here, uT : Alg(T ) → E is the forgetful functor, yE : E → [Eop,Set] is the Yoneda embedding, and
kT : E → Kl(T ) is the Kleisli inclusion.

As has been repeatedly demonstrated in recent years, many classes of well-behaved monads admit
a refinement of the pullback theorem, in which the category of algebras is expressed as a pullback
over the nerve nj : E → [Aop,Set] of some dense functor j : A → E. (In particular, the classical
pullback theorem is recovered by taking j = 1E .) Such characterisations are frequently referred to as
nerve theorems, and endow the monad and its category of algebras with particularly nice properties.
Examples of classes of monads satisfying respective nerve theorems include familially representable
monads [2], monads with arities [3, 4, 5], J -ary monads [6], and nervous monads [7, 8]. It is natural
to wonder to what extent these phenomena are related.

In this talk, I will explain how, by generalising the pullback theorem from monads to relative
monads [9, 10], we may view each of the aforementioned nerve theorems as particular instances of a
more (and, indeed, maximally) general phenomenon.

This talk is based on the recent preprint [11].
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