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Abstract.
A type theoretic universe π : E → U in a locally cartesian closed category C (as in [1]) can

be shown to bear an algebraic structure resulting from the type-forming operations of unit type,
dependent sum, and dependent product (as shown in [2]). Specifically, the associated polynomial
endofunctor Pπ : C → C has the structure of a monad, for which π is itself an algebra.

This structure is here abstracted to form the concept of a “Martin-Löf algebra”. Any ML-algebra is
shown to model Martin-Löf type theory, and the free ones then have special type-theoretic properties.
The general theory of ML-algebras is a “proof-relevant” or categorified version of the theory of Zermelo-
Fraenkel algebras from the algebraic set theory of Joyal & Moerdijk [3].

For example, any representable natural transformation π : E → U of presheaves, as in [2], is
necessarily tiny in the sense of Lawvere: the right adjoint push-forward functor π∗ : C/E → C/U has
a further right adjoint. It follows that the polynomial endofunctor Pπ : C → C is cocontinuous and
therefore admits an algebraically free monad structure, by a familiar iteration [4]. The (type theory
modeled by the) colimit πω : Eω → Uω is then the free completion under Σ-types of (that modeled
by) π : E → U . Various other type-theoretic constructions are similarly related to functorial algebraic
ones.
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