Algebraic Type Theory

S. Awodey

Steve Awodey (awodey@cmu.edu) Carnegie Mellon University

Abstract.

A type theoretic universe $\pi: E \to U$ in a locally cartesian closed category \mathcal{C} (as in [1]) can be shown to bear an algebraic structure resulting from the type-forming operations of unit type, dependent sum, and dependent product (as shown in [2]). Specifically, the associated polynomial endofunctor $P_{\pi}: \mathcal{C} \to \mathcal{C}$ has the structure of a monad, for which π is itself an algebra.

This structure is here abstracted to form the concept of a "Martin-Löf algebra". Any ML-algebra is shown to model Martin-Löf type theory, and the free ones then have special type-theoretic properties. The general theory of ML-algebras is a "proof-relevant" or *categorified* version of the theory of Zermelo-Fraenkel algebras from the algebraic set theory of Joyal & Moerdijk [3].

For example, any representable natural transformation $\pi: E \to U$ of presheaves, as in [2], is necessarily tiny in the sense of Lawvere: the right adjoint push-forward functor $\pi_*: \mathcal{C}/E \to \mathcal{C}/U$ has a further right adjoint. It follows that the polynomial endofunctor $P_{\pi}: \mathcal{C} \to \mathcal{C}$ is cocontinuous and therefore admits an algebraically free monad structure, by a familiar iteration [4]. The (type theory modeled by the) colimit $\pi^{\omega}: E^{\omega} \to U^{\omega}$ is then the free completion under Σ -types of (that modeled by) $\pi: E \to U$. Various other type-theoretic constructions are similarly related to functorial algebraic ones

This material is based upon work supported by the Air Force Office of Scientific Research under awards number FA9550-21-1-0009, FA9550-20-1-0305 and FA9550-15-1-0053. Submitted to CT2024.

References

- [1] S. Awodey. On Hofmann-Streicher universes, preprint arXiv:2205.10917, 2022.
- [2] S. Awodey. Natural models of homotopy type theory. Math. Stru. Comp. Sci. 28 (2008), no. 2, pp. 241–286.
- [3] A. Joyal and I. Moerdijk, Algebraic Set Theory, Cambridge University Press, 1995.
- [4] Kelly G.M., A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bull. Austr. Math. Soc. 22 (1980) no. 1, pp. 1–83.