## Invertible cells in weak $\omega$ -categories

## T. Benjamin

Thibaut Benjamin (tjb201@cam.ac.uk) University of Cambridge

Ioannis Markakis (ioannis.markakis@cl.cam.ac.uk) University of Cambridge

## Abstract.

Coinductively invertible cells play a key role in the homotopy theory of strict  $\omega$ -categories [3], allowing one to define weak equivalences among them. The definition of coinductively invertible cell generalises to weak  $\omega$ -categories, suggesting the existence of a similar homotopy theory for weak  $\omega$ -categories. Such cells have been studied by Fujii et al. [2] for Batanin and Leinster's weak  $\omega$ -categories [4]. Using the new description of weak  $\omega$ -categories and their computads given by Dean et al. [1], we extend and give alternative proofs of their results. We provide sufficient conditions for a cell in a weak  $\omega$ -category X to be invertible, and show that those conditions are also necessary when X is free on a finite-dimensional computad. We show in particular that coherence cells and composites of invertible cells are invertible by explicitly constructing an inverse.

## References

- [1] C. Dean, E. Finster, I. Markakis, D. Reutter and J. Vicary, Computads for weak  $\omega$ -categories as an inductive type, preprint arXiv:2208.08719, 2022.
- [2] S. Fujii, K. Hoshino and Y. Maehara, Weakly invertible cells in a weak  $\omega$ -category, preprint arXiv:2303.14907, 2023.
- [3] Y. Lafont, F. Métayer and K. Worytkiewicz, A folk model structure on omega-cat, Advances in Mathematics, 2010, 224(3):1183-1231. doi:10.1016/j.aim.2010.01.007.
- [4] T. Leinster, Higher Operads, Higher Categories, Cambridge University Press, 2004.