Pushforward monads

A. Doña Mateo

Adrián Doña Mateo (adrian.dona@ed.ac.uk) University of Edinburgh

Abstract.

If **T** is a monad on \mathcal{C} and $G: \mathcal{C} \to \mathcal{D}$ is right adjoint to F, then $G\mathbf{T}F$ is a monad on \mathcal{D} , which we denote $G_{\#}\mathbf{T}$. Even when G is not a right adjoint, we can define $G_{\#}\mathbf{T}$ subject to the existence of a right Kan extension. This is the pushforward of **T** along G. This construction was first considered by Street in [2], where it takes place in a general (strict) 2-category, but has received very little attention since.

In this talk, I will review its definition, introduce its functoriality properties with respect to G and \mathbf{T} , and state the universal property satisfied by $G_{\#}\mathbf{T}$. Pushforwards turn out to be intimately related to codensity monads: pushing the identity monad forward along G gives the codensity monad of G. Moreover, any pushforward monad is a codensity monad, whereby $G_{\#}\mathbf{T}$ is the codensity monad of $GU^{\mathbf{T}}$, with $U^{\mathbf{T}}$ being the forgetful functor from the category of \mathbf{T} -algebras.

I will then present examples of the pushforward of three families of monads on the category of finite sets along the inclusion $\mathbf{FinSet} \hookrightarrow \mathbf{Set}$. Each of these turn out to be related to the well-known codensity monad of this inclusion, which was shown to be the ultrafilter monad by Kennison and Gildenhuys [1]. Lastly, I will identify the category of algebras of the codensity monad of $\mathbf{Field} \hookrightarrow \mathbf{Ring}$ as the free product completion of \mathbf{Field} , denoted $\mathbf{Prod}(\mathbf{Field})$. Pushing this monad forward along the forgetful functor $\mathbf{Ring} \to \mathbf{Set}$ gives the codensity monad of $\mathbf{Field} \to \mathbf{Set}$. Its category of algebras is still $\mathbf{Prod}(\mathbf{Field})$, giving the remarkable fact that $\mathbf{Prod}(\mathbf{Field})$ is monadic over \mathbf{Set} , even though \mathbf{Field} is famously not.

References

- [1] J. F. Kennison, and D. Gildenhuys, Equational completion, model induced triples and pro-objects, Journal of Pure and Applied Algebra 1.4 (1971).
- [2] R. Street, The formal theory of monads, Journal of Pure and Applied Algebra 2.2 (1972).