Galois theory and homology in quasi-abelian functor categories

N. Egner

Nadja Egner (nadja.egner@uclouvain.be) Université catholique de Louvain

Abstract.

In this presentation based on [2], I will consider the category $\mathscr{A}^{\mathbb{T}}$ of functors from a finite category \mathbb{T} to a quasi-abelian category \mathscr{A} , and show that, for any replete full subcategory \mathbb{S} of \mathbb{T} , the full subcategory \mathscr{F} of $\mathscr{A}^{\mathbb{T}}$ with objects the functors $F: \mathbb{T} \to \mathscr{A}$ with F(T) = 0 for all $T \notin \mathbb{S}$ is a reflective and, moreover, torsion-free subcategory of $\mathscr{A}^{\mathbb{T}}$. This implies that the corresponding Galois structure is admissible, and I will characterize the (higher) central extensions in $\mathscr{A}^{\mathbb{T}}$ with respect to \mathscr{F} and the classes of regular epimorphisms in $\mathscr{A}^{\mathbb{T}}$ and \mathscr{F} , respectively. More precisely, for a regular epimorphism α in $\mathscr{A}^{\mathbb{T}}$, the following conditions are equivalent:

- 1. α is a central extension.
- 2. The kernel $Ker(\alpha)$ of α lies in \mathscr{F} .
- 3. The T-component α_T is an isomorphism for all $T \notin \mathbb{S}$.

Furthermore, I will give generalized Hopf formulae for homology.

Instances of the pair $(\mathscr{A}^{\mathbb{T}}, \mathscr{F})$ are given by $(\operatorname{Arr}(\mathscr{A}), \mathscr{A})$, $(\operatorname{Arr}^2(\mathscr{A}), 2\operatorname{-Arr}(\mathscr{A}))$ and, more generally, $(\operatorname{Arr}^n(\mathscr{A}), n\operatorname{-Arr}(\mathscr{A}))$ for every $n \geq 1$, where $n\operatorname{-Arr}(\mathscr{A})$ denotes the category with objects the chain complexes in \mathscr{A} of length n. Since \mathscr{A} is assumed to be quasi-abelian, $\operatorname{Arr}^n(\mathscr{A})$ is equivalent to the category $\operatorname{Grpd}^n(\mathscr{A})$ of internal $n\operatorname{-fold}$ groupoids in \mathscr{A} and $n\operatorname{-Arr}(\mathscr{A})$ is equivalent to the category $n\operatorname{-Grpd}(\mathscr{A})$ of internal $n\operatorname{-groupoids}$ in \mathscr{A} .

Let me shortly recall the notions of (higher) central extensions and generalized Hopf formulae for homology.

Categorical Galois theory

Categorical Galois theory, see e.g. [3], generalizes both classical Galois theory and the theory of central extensions of groups. A Galois structure Γ consists of an adjunction

$$\mathscr{C} \xrightarrow{\stackrel{\mathsf{F}}{\longleftarrow}} \mathscr{F}$$

with unit η , and classes $\mathscr E$ and $\mathscr Z$ of morphisms in $\mathscr E$ and $\mathscr F$, respectively, that satisfy certain conditions. For any object B in $\mathscr E$, this induces an adjunction

$$\mathscr{E}(B) \xrightarrow[\mathsf{U}^B]{\mathsf{F}^B} \mathscr{Z}(\mathsf{F}(B)),$$

where $\mathscr{E}(B)$, also denoted by $\operatorname{Ext}(B)$, is the full subcategory of the slice category $\mathscr{C} \downarrow B$ with objects the morphisms in \mathscr{E} with codomain B. These are called the *extensions* of B. Categorical Galois theory is concerned with the study of the full subcategory $\operatorname{CExt}(B)$ of $\operatorname{Ext}(B)$ with objects the central extensions of B. This notion is defined in two steps:

- An extension $f: A \to B$ is called *trivial* if it lies in the essential image of U^B .
- It is called *central* if it is 'locally' trivial, i.e., there exists a monadic extension $p: E \to B$ such that the pullback $p^*(f)$ of f along p is a trivial extension.

If the Galois structure Γ is admissible, the fundamental theorem of categorical Galois theory asserts that, for any monadic extension $p: E \to B$, there is a characterization of the extensions of B, whose pullback along p is a trivial extension, in terms of internal actions of the Galois pregroupoid $\operatorname{Gal}(E,p)$.

The central extensions with respect to the Galois structure Γ_{Ab} given by the adjunction

$$\operatorname{Grp} \xrightarrow{\stackrel{\operatorname{Ab}}{\longleftarrow}} \operatorname{Ab},$$

where Ab and I are the abelianization and inclusion functors, respectively, and \mathscr{E} and \mathscr{Z} are the classes of surjective group homomorphisms in Grp and Ab, respectively, recover exactly the classical central extension of groups.

Generalized Hopf formulae for homology

In certain cases, see e.g. [1], the full subcategory $CExt(\mathscr{C})$ of central extensions in \mathscr{C} of $Ext(\mathscr{C})$ induces itself a Galois structure Γ_1 with adjunction

$$\operatorname{Ext}(\mathscr{C}) \xrightarrow{\mathsf{F}_1} \operatorname{CExt}(\mathscr{C})$$

with unit η^1 , and with \mathscr{E}^1 and \mathscr{Z}^1 the classes of double extensions defined relatively to \mathscr{E} and \mathscr{Z} , respectively. It turns out that the functor $[-]^1 : \operatorname{Ext}(\mathscr{C}) \to \operatorname{Ext}(\mathscr{C})$ given on objects by $[f] := \operatorname{Ker}(\eta_f^1)$, factors through \mathscr{C} , i.e., there exists a functor $[-]_1 : \operatorname{Ext}(\mathscr{C}) \to \mathscr{C}$ such that $[-]^1 = \iota^1 \circ [-]_1$, where ι^1 maps an object B to the extension $B \to 0$.

If $p: P \to B$ is a \mathscr{E} -projective presentation of B, the second Hopf formula for homology of B with respect to \mathscr{F} is defined as

$$H_2(B,\mathscr{F}) := \frac{[P] \cap \operatorname{Ker}(p)}{[p]_1},$$

where $[P] := \text{Ker}(\eta_P)$. More generally, the (n+1)-st Hopf formula for homology $H_{n+1}(B, \mathscr{F})$ is defined using the notions of n-fold central extensions and n-fold \mathscr{E} -projective presentations.

The generalized Hopf formulae with respect to the Galois structure Γ_{Ab} recover exactly the integral homology groups.

References

- [1] T. Everaert, M. Gran and T. Van der Linden, Higher Hopf formulae for Homology via Galois Theory, Adv. in Mathematics 217 (2008), 2231–2267.
- [2] N. Egner, Galois theory and homology in quasi-abelian functor categories, preprint arXiv:2403.12750, 2024.
- [3] G. Janelidze, Categorical Galois theory: revision and some recent developments, Galois connections and applications, Math. Appl., vol. 565, Kluwer Acad. Publ., 2004, 139–171.