On eigen-ring construction for monads

M. Kim

Minkyu Kim (kimminq@kias.re.kr) Korea Institute for Advanced Study

Abstract.

For a ring A and its left ideal J, the eigen-ring [1] is defined by the quotient of the idealizer by J where the idealizer is the maximal subring of A which contains J as a two-sided ideal. Let k be a commutative unital ring. In this talk, we give a generalization of this concept by replacing rings with monads in the bicategory B_k whose objects are sets, morphisms are bi-indexed k-modules and 2-morphisms are intertwiners. This provides a uniform framework to understand some representations of categories which we explain below. As a fundamental result, for a monad T, a left ideal $J \subset T$ and its eigen-ring $E_T(J)$, we give an adjunction between the category of T-modules and the category of T-modules. This adjunction is a generalization of the Morita equivalence between T-modules and modules over the matrix algebra.

Monads in B_k are equivalent with k-linear categories. Let $A_{\mathcal{C}}$ be the monad corresponding to the k-linearization $k\mathcal{C}$ of a category \mathcal{C} . The purpose of this talk is to give specific left ideals which encode some properties of $A_{\mathcal{C}}$ -modules: to be precise, the category of J-generated $A_{\mathcal{C}}$ -modules, which should be explained in this talk, is equivalent to the category of $A_{\mathcal{C}}$ -modules subject to that property. For example, if \mathcal{C} is the opposite category gr^o of finitely generated free groups, then the properties such as analyticity, polynomiality [3, 4, 6], outer property [5] and primitivity [2] correspond to certain left ideals \mathbf{I}^{ν} , \mathbf{I}^{d+1} , \mathbf{I}^{out} , \mathbf{I}^{pr} respectively. As one of our main results, the table below computes their eigen-rings where \mathbf{P}^d is the monad related with augmentation ideals; $\mathbf{D}_{\mathfrak{Lic}}$ is the monad associated with Lie operad; \mathbf{H}_0 is the monad induced by the 0-th group homology of free groups. Moreover, the application of the above adjunction to each case leads to well-known adjunctions in the literature. In particular, the case of primitivity reproduces the universal enveloping algebra construction (more generally, Powell's construction [6]). This work is now in progress.

Monad T	Property	Left ideal J	Eigen-monad $E_T(J)$
Agro	polynomial with degree $\leq d$	I^{d+1}	P^0/P^{d+1}
	analytic	\mathtt{I}^{ν}	$\mathrm{E}_{\mathtt{A}_{\mathcal{C}}}(\mathtt{I}^{ u}_{\mathcal{C}})$
	primitive	I ^{pr}	$\mathtt{D}_{\mathfrak{Lie}}$
	outer	I ^{out}	H_0

References

[1] Ore, Oystein. "Formale Theorie der linearen Differentialgleichungen.(Zweiter Teil)." (1932): 233-252.

- [2] Kim, Minkyu, and Christine Vespa. "On analytic exponential functors on free groups." arXiv preprint arXiv:2401.09151 (2024).
- [3] Eilenberg, Samuel, and Saunders MacLane. "On the groups $H(\Pi, n)$, II: methods of computation." Annals of Mathematics (1954): 49-139.
- [4] Hartl, Manfred, Teimuraz Pirashvili, and Christine Vespa. "Polynomial functors from algebras over a set-operad and nonlinear Mackey functors." International Mathematics Research Notices 2015.6 (2015): 1461-1554.
- [5] Powell, Geoffrey, and Christine Vespa. "Higher Hochschild homology and exponential functors." arXiv preprint arXiv:1802.07574 (2018).
- [6] Powell, Geoffrey. "On analytic contravariant functors on free groups." arXiv preprint arXiv:2110.01934 (2021).