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Abstract.
Let T be a monad on an augmented virtual double category K, the latter in the sense of [1]. The

main result of this talk describes conditions ensuring that a formal Yoneda embedding y : A → P in K
(in the sense of [2]) can be lifted along the forgetful functor U : Lax−T−Alg → K, where Lax−T−Alg
is the augmented virtual double category of lax T -algebras.

Taking K = Prof the augmented virtual double category of profunctors and T the “free strict
monoidal category”-monad the main result recovers the Day convolution monoidal structure on the
category of presheaves P = SetA

op
on a monoidal category A. Taking the same monad on the

augmented virtual double category K = dFib of two-sided discrete fibrations instead, the main result
implies the “monoidal Grothendieck equivalence” of lax monoidal functors A → Set and monoidal
discrete opfibrations with base A (a variation on a result in [3] by Moeller and Vasilakopoulou).

Moving up a dimension, given a 2-monoidal 2-category A the main result likewise implies the
equivalence of lax 2-monoidal 2-functors A → Cat and 2-monoidal locally discrete split 2-opfibrations
with base A. The main ingredient here is that (somewhat surprisingly) there exists an augmented vir-
tual double category that accommodates the lax natural transformations required to define the formal
Yoneda embedding induced by the Grothendieck equivalence for locally discrete split 2-opfibrations
(the latter obtained by Buckley [4] and Lambert [5]).

I will report on work in progress on “internalising” the equivalence for 2-monoidal locally discrete
split 2-opfibrations described above, thus obtaining an analogous equivalence for monoidal double split
opfibrations (double fibrations in the sense of Cruttwell, Lambert, Pronk and Szyld [6]).
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