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Abstract.
Storage modalities provide the categorical interpretation of the exponential modality from Linear

Logic, while differential storage modalities [1, 2] do the same in Differential Linear Logic. Briefly, a
storage modality on a symmetric monoidal category with finite products is a comonad ! such that every
!A is naturally a cocommutative comonoid and we have the Seely isomorphism !(A × B) ∼= !A ⊗ !B.
A differential storage modality on an additive symmetric monoidal category with finite biproducts is
a storage modality ! which comes equipped with a natural transformation d : !A ⊗ A → !A, called
the deriving transformation, whose axioms are based on the fundamental identities of differentiation
such as the product rule and the chain rule. Using Kelly’s notion of algebraically-free commutative
monoids [3], we construct free differential storage modalities over storage modalities. A symmetric
monoidal category is said to be endowed with algebraically-free commutative monoids if for every
object X, there is an object S(X) equipped with a map S(X)⊗X → S(X) which is universal amongst
commutative right X-actions A ⊗X → X. Then for an additive symmetric monoidal category with
finite biproducts which is endowed with algebraically-free commutative monoids, for every storage
modality !, we get that !(−)⊗ S(−) is the free differential storage modality over !. In other words, in
this setting, the forgetful functor from the category of differential storage modalities to the category
of storage modalities has a left adjoint. Moreover, when taking ! to be the initial storage modality, we
get the initial differential storage modality which is related to the Faà di Bruno construction [2] and
also recaptures the exponential modality in Clift and Murfet’s Differential Linear Logic model [4].
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