Homotopy colimits enriched over a general base

G. Leoncini

Giuseppe Leoncini (leoncini@math.muni.cz) Masaryk University

Abstract.

Starting from a 1-categorical base \mathcal{V} which is *not* assumed endowed with a choice of model structure (or any kind of homotopical structure), we define homotopy colimits enriched in \mathcal{V} in such a way that, for $\mathcal{V} = \mathsf{Set}$, we retrieve the classical theory as presented in [1] and [3]. We construct the free homotopy \mathcal{V} -cocompletion of a small \mathcal{V} -category and show that it satisfies the expected universal property. For $\mathcal{V} = \mathsf{Set}$, we retrieve Dugger's construction of the universal homotopy theory on a small category \mathcal{C} . We define the homotopy theory of internal ∞ -groupoids in \mathcal{V} as the homotopy \mathcal{V} -cocompletion of a point, and argue that \mathcal{V} -enriched homotopy colimits correspond to colimits in ∞ -categories enriched in internal ∞ -groupoids in \mathcal{V} , thus providing a convenient model to perform computations. Again, taking $\mathcal{V} = \mathsf{Set}$, this retrieves the classical notions for ordinary $(\infty,1)$ -categories. We compare our approach with some previous definitions of enriched homotopy colimits, such as those in [4] and [6]. As an application, we settle, for any group, a conjecture that in the case of a finite group was recently proven by completely different methods in [5]: we show that the so-called genuine homotopy theory of G-spaces is the G-equivariant homotopy cocompletion of a point. We conclude providing further examples of homotopy theories that can be seen as homotopy \mathcal{V} -cocompletions for a suitable choice of enrichment.

References

- [1] W. Dwyer, P. S. Hirschhorn, D. Kan, J. Smith, *Homotopy Limit Functors on Model Categories and Homotopical Categories*, Mathematical Surveys and Monographs, Volume 113, American Mathematical Society, 2004.
- [2] D. Dugger, Universal Homotopy Theories, Advances in Mathematics 164, 2001, pp. 144-176.
- [3] P. S. Hirschhorn, *Model categories and their localizations*, Mathematical Surveys and Monographs, volume 99, American Mathematical Society, 2003.
- [4] S. Lack and J. Rosický, *Homotopy locally presentable enriched categories*, Theory and Applications of Categories, Vol. 31, No. 25, 2016, pp. 712–754.
- [5] J. Shah, Parametrized higher category theory, Algebraic and Geometric Topology 23, 2023, 509-644.
- [6] M. Shulman, Homotopy limits and colimits and enriched homotopy theory, arXiv:math/0610194, 2009.