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Abstract.
It has long been known [EKKKT74] that automata can be interpreted within every monoidal cate-
gory (K, ®,I); the cornerstone results in this direction are essentially three:

S1.

S2.

S3.

it T: K — K is a commutative monad, ‘Mealy’ and ‘Moore’ machines in the (monoidal) Kleisli
category Kr are ‘non-deterministic’ machines for a notion of fuzziness prescribed by T' (examples
of this are: exceptions monads, various probability monads, the powerset monad);

if KC is closed, one can characterize Mealy and Moore machines coalgebraically [Jac06], and this
provides a slick proof of the cocompleteness of the categories Mly(A, B) and Mre(A4, B) that
they form [AT90];

if (and curiously enough, only if) K is Cartesian monoidal, Mly(A, B) is the hom-category of
a bicategory Mly [Gui74, KSW97|, and Mre(A, B) the hom-category of a semibicategory (a
bicategory without identity 1-cells, cf. [Mit72, MBCB02| and [BFL*23|) Mre.

Starting from the well-known principle that regards a monoidal category as nothing but a single-
object bicategory, we fix a general bicategory B and study ‘abstract machines’ in B, i.e. diagrams of
2-cells of the form

@9
.

where i, e, 0 are 1-cells respectively dubbed the ‘input’ 1-cell, the ‘state’ 1-cell and the ‘output’ 1-cell.
We then proceed to find parallels for S1, S2, S3 in this more general setting:

B1.

B2.

let T' be a monad on Set and (V,®, L) a quantale. The study of bicategorical machines in the
bicategory of (T, V)-relations of [HST14] accounts for notions of non-determinism that are mod-
eled on topologies, approach structures, metric and ultrametric structures, Kuratowski closure
spaces, and all the likes of structures studied by monoidal topology;

in perfect parallel with the monoidal case, the behaviour of a Mealy/Moore machine can be
characterized through a universal property [Gog72]; a terminal coalgebra for monoidal machines,
a weighted limit of sorts for bicategorical machines. In the case of Moore machines the description
is prettier, in terms of a (pointwise) right extension. This clarifies long-forgotten remarks by
Bainbridge [Bai75] on properties of abstract machines seen as Kan extensions;



B3. passing from single- to multi-object bicategories, we gain an additional degree of freedom by
indexing hom-categories over generic objects; in particular, we gain a rich compositional struc-
ture that was not present in the monoidal case, a way of composing machines that is neither
sequential nor parallel and that we dub intertwining.

This talk presents, and expands on, joint works with A. Laretto, G. Boccali, B. Femi¢, S. Luneia, see
[BLLL23, BFL.*23|
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