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Abstract.
The thesis of this contribution is that one does not have to restrict the class of measurable spaces

under consideration to develop a fruitful theory of probability. To this end we suggest a variation of
the concept of the Giry monad. As in Giry’s legendary paper, we motivate the new concept by study
of preservation of limits contributing new results. As an application we show that the Wasserstein
distance is actually a distance on the probability measures considered in our set-up.

Motivation.
In 1982 Giry introduced her concept of Giry monad in two variations—first, as a monad on the

category Meas of measurable spaces1 and, second, as a monad on the category of Polish spaces. Both
are motivated with preservation of limit properties, which turn out to be stronger in the later case.

Around the same time, some deep exploration of measure theory was still taking place: [1, 2, 3, 5].
Unfortunately, it seems that the relevance of the remarkable and miraculous result of Pachl [2] for
a categorical approach to probability was not spotted. Actually, it enables one, to generalise Giry’s
results for Polish spaces to measurable spaces.

When working with general measurable spaces and measures thereon some limitations occur:

1. projections of measurable sets are not necessarily measurable

2. the Giry monad does not necessarily (weakly) preserve directed limits2, and

3. countably generated σ-algebras are normally too small to model the notion of “almost surely”.

Classically, these issues are addressed by restricting the class of spaces under consideration—with
analytic spaces (including Polish spaces) being the most general class that allows for a rich theory
(actually, this approach basically transfers limitation 1 into a definition). But analytic spaces do not
encompass the theory of distributions, i.e. discrete measures on arbitrary sets, which play a paramount
role in logic and computer science. A solution to limitation 3 is to enlarge the σ-algebra by completing
it. Though this process comes at a price: Since a countable representation is lost, one is often forced
into a situational choice.

Another problem is that quite natural “large” examples are excluded by the classical approach, e.g.
the measurable space induced by the well-known French railway metric defined on the set R2:

d(u, v) =

{
||u| − |v|| if u = rv for some r ∈ (0,∞)

|u|+ |v| else
for u, v ∈ R2 (1)

1i.e. pairs (X,A) of a set X and a σ-algebra A
2in elementary terms: given consistent probabilities on the objects of a diagram in Meas a probability on the limit

need not exist



modelling all potential railway lines in France. As for more categorical limitations, note that analytic
spaces can have at most the cardinality of the continuum, so arbitrary limits and colimits are already
excluded by size.

We suggest to remedy the situation as follows: Instead of excluding certain measurable spaces, we
restrict the Giry monad. Namely, let a law on a measurable space (X,A) be a probability measure
thereon, such that it extends to a probability measure p′ on a larger set Xp ⊇ X on which a σ-algebra
Ap generated from a semicompact paving3 is given such that A is a subset of the p′-completion of Ap.
This approach generalises the notion of a Radon space. Probably, this idea appeared to one or the
other already. But they then failed to form a functor therefrom, as one must guarantee that the
push-forward of a law along a measurable map is again a law. Surprisingly, Pachl proved this in 1979
[2] (see also [6, 452R]). So we define the Giry monad on (X,A) to be the collection of laws on (X,A).

Results.
As directed limits are not preserved by the Giry monad as defined by Giry [4], she had to impose a

technical condition. Only in the case of Polish spaces, which she discusses only for the index set ωop,
she could avoid this technical condition. We prove limit preservation in the case of our Giry monad
holds for general directed index categories on measurable spaces.

Moreover, we discuss other limit shapes, especially pushouts, where we can provide a result of weak
limit preservation. In this context, we can also show that the Wasserstein distance is a distance, i.e.
satisfies the triangle inequality, for laws. Classically, the Wasserstein distance is only considered for
probability measures on separable metric spaces, where it is a corner stone of several industries—e.g.
optimal transport or concurrency theory in computer science. To round up the discussion, we give a
negative examples of shapes that are not preserved, e.g. equalisers.

For analytic spaces, our Giry monad coincides with Giry’s original definition. The same holds in
the example expressed in (1). We also add a few propositions paving the way to a further development
of probability (and measure) theory based on the current suggestion.

We conclude with some set theoretic remarks. Moreover, we give some thoughts on how to “extend”
our approach to analytic spaces, i.e. define a measure that looks like a measure on an analytic space.
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3also called countably compact or semicompact class, a collection of subsets of X such that every countable subcol-
lection satisfying the finite intersection property (FIP, i.e. every finite subcollection has non-empty intersection) has
non-empty intersection


