\mathscr{V} -graded categories and \mathscr{V} - \mathscr{W} -bigraded categories: Functor categories and bifunctors over non-symmetric bases

R. Lucyshyn-Wright

Rory Lucyshyn-Wright (lucyshyn-wrightr@brandonu.ca) Brandon University

Abstract. Categories graded by a monoidal category \mathcal{V} , or $(\mathcal{V}-)$ graded categories, were introduced by Wood [1] under the name large \mathcal{V} -categories, and they simultaneously generalize both \mathcal{V} -enriched categories and \mathcal{V} -actegories in the absence of any assumptions on \mathcal{V} ; also see [2, 3, 4]. Explicitly, \mathcal{V} -graded categories may be defined as categories enriched in the presheaf category $\hat{\mathcal{V}} = [\mathcal{V}^{\mathsf{op}}, \mathsf{SET}]$ with its Day convolution monoidal structure, while they also admit a direct elementwise definition.

Given an arbitrary strict monoidal category \mathcal{V} , we show that \mathcal{V} -graded categories support a robust theory of graded functor categories and bifunctors, enabled by a notion of bigraded category that we introduce. This is in contrast with the usual settings of enriched category theory, where the definition of enriched functor categories and bifunctors employs a symmetry [5], braiding, or duoidal structure on \mathcal{V} [6] and so is not applicable when working with just a biclosed monoidal category \mathcal{V} or, more generally, a closed bicategory, where one nevertheless has a robust theory of \mathcal{V} -modules and of \mathcal{V} -categories of \mathcal{V} -valued presheaves [7, 8], but these are not defined in terms of bifunctors and functor categories.

We develop our results on graded functor categories in a general setting that begins with a given pair of strict monoidal categories $\mathscr V$ and $\mathscr W$. Writing $\mathscr W^{\mathsf{rev}}$ to denote the reverse of $\mathscr W$, we consider both $\mathscr V$ -graded categories and $\mathscr W^{\mathsf{rev}}$ -graded categories, calling the former left $\mathscr V$ -graded categories and the latter right $\mathscr W$ -graded categories. A $\mathscr V$ - $\mathscr W$ -bigraded category is then a left ($\mathscr V \times \mathscr W^{\mathsf{rev}}$)-graded category and so has both an underlying left $\mathscr V$ -graded category and an underlying right $\mathscr W$ -graded category. For example, both $\mathscr V$ and $\hat {\mathscr V}$ underlie $\mathscr V$ - $\mathscr V$ -bigraded categories.

Given a left \mathscr{V} -graded category \mathscr{A} and a \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} , we show that there is a right \mathscr{W} -graded category $[\mathscr{A},\mathscr{C}] = {}^{\mathscr{V}}[\mathscr{A},\mathscr{C}]_{\mathscr{W}}$ whose objects are (left) \mathscr{V} -graded functors from \mathscr{A} to \mathscr{C} . Similarly, given a right \mathscr{W} -graded category \mathscr{B} and a \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} , we obtain a left \mathscr{V} -graded category $[\mathscr{B},\mathscr{C}] = {}_{\mathscr{V}}[\mathscr{B},\mathscr{C}]^{\mathscr{W}}$ whose objects are right \mathscr{W} -graded functors from \mathscr{B} to \mathscr{C} . In particular, if \mathscr{D} is a left \mathscr{V} -graded category, then its *opposite* \mathscr{D}^{op} is a *right* \mathscr{V} -graded category, so if \mathscr{C} is a \mathscr{V} - \mathscr{V} -bigraded category then $[\mathscr{D}^{op},\mathscr{C}]$ is a left \mathscr{V} -graded category.

Given a left \mathscr{V} -graded category \mathscr{A} and a right \mathscr{W} -graded category \mathscr{B} , we construct a \mathscr{V} - \mathscr{W} -bigraded category $\mathscr{A} \boxtimes \mathscr{B}$ whose objects are pairs (A,B) with $A \in \mathsf{ob}\,\mathscr{A}$ and $B \in \mathsf{ob}\,\mathscr{B}$. Given also a \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} , we may therefore consider \mathscr{V} - \mathscr{W} -bigraded functors of the form $F: \mathscr{A} \boxtimes \mathscr{B} \to \mathscr{C}$, which provide a notion of bifunctor in the graded setting. Writing $_{\mathscr{V}}\mathsf{GCAT}$, $\mathsf{GCAT}_{\mathscr{W}}$, and $_{\mathscr{V}}\mathsf{GCAT}_{\mathscr{W}}$ for the 2-categories of left \mathscr{V} -graded categories, right \mathscr{W} -graded categories, and \mathscr{V} - \mathscr{W} -bigraded categories, respectively, we show that there are 2-natural isomorphisms

 $_{\mathscr{V}}GCAT(\mathscr{A}, [\mathscr{B}, \mathscr{C}]) \cong _{\mathscr{V}}GCAT_{\mathscr{W}}(\mathscr{A} \boxtimes \mathscr{B}, \mathscr{C}) \cong GCAT_{\mathscr{W}}(\mathscr{B}, [\mathscr{A}, \mathscr{C}])$.

In the special case where \mathscr{V} is *symmetric* monoidal and we take $\mathscr{W} = \mathscr{V}$, there is no essential distinction between left and right \mathscr{V} -graded categories, while every \mathscr{V} -graded category is canonically \mathscr{V} - \mathscr{V} -bigraded, and we recover the \mathscr{V} -graded functor categories and bifunctors that were studied by Wood [1, §1.6] and coincide with the usual \mathscr{V} -enriched concepts for the symmetric monoidal category $\mathscr{V} = [\mathscr{V}^{op}, \operatorname{SET}]$, though $\mathscr{A} \boxtimes \mathscr{B}$ does not coincide with the monoidal product of \mathscr{V} -categories $\mathscr{A} \otimes \mathscr{B}$.

Given an arbitrary strict monoidal category $\mathscr V$ and a pair of right $\mathscr V$ -graded categories $\mathscr A$ and $\mathscr B$, we may consider $\mathscr V$ - $\mathscr V$ -bigraded functors $F:\mathscr B^{\mathsf{op}}\boxtimes\mathscr A\to\mathscr C$ valued in any $\mathscr V$ - $\mathscr V$ -bigraded category $\mathscr C$, and we call these $\mathscr V$ -graded modules from $\mathscr A$ to $\mathscr B$ in $\mathscr C$. Passing to the special case where $\mathscr C=\hat{\mathscr V}$, we show that $\mathscr V$ -graded modules in $\hat{\mathscr V}$ are precisely $\hat{\mathscr V}$ -modules between $\hat{\mathscr V}$ -categories, in the sense obtained by specializing [7, 8] to base of enrichment $\hat{\mathscr V}=[\mathscr V^{\mathsf{op}},\mathrm{SET}]$. Furthermore, we show that the $\hat{\mathscr V}$ -enriched presheaf $\hat{\mathscr V}$ -category $\mathscr P\mathscr B$ that is obtained by applying Street's enriched presheaf construction [7] relative to the base of enrichment $\hat{\mathscr V}$ is precisely the right $\mathscr V$ -graded category $[\mathscr B^{\mathsf{op}},\hat{\mathscr V}]$ that is obtained as an example of the above general construction of graded functor categories.

References

- [1] R. J. Wood, Indicial methods for relative categories, Ph.D. thesis, Dalhousie University, 1976.
- [2] R. Garner, An embedding theorem for tangent categories, Adv. Math. 323 (2018), 668–687.
- [3] P. B. Levy, *Locally graded categories*, Talk slides, https://www.cs.bham.ac.uk/~pbl/papers/locgrade.pdf, 2019.
- [4] D. McDermott and T. Uustalu, *Flexibly graded monads and graded algebras*, Lecture Notes in Comput. Sci., vol. 13544, Springer, 2022, pp. 102–128.
- [5] G. M. Kelly, Basic concepts of enriched category theory, Repr. Theory Appl. Categ. (2005), no. 10, Reprint of the 1982 original [Cambridge Univ. Press].
- [6] R. Garner and I. López Franco, Commutativity, J. Pure Appl. Algebra (2016), 1707–1751.
- [7] R. Street, *Enriched categories and cohomology*, Repr. Theory Appl. Categ. (2005), no. 14, 1–18, Reprinted from Quaestiones Math. 6 (1983), no. 1-3, 265–283.
- [8] R. Betti, A. Carboni, R. Street, and R. Walters, *Variation through enrichment*, J. Pure Appl. Algebra **29** (1983), no. 2, 109–127.