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Abstract. This talk is based on our recent preprint [1]. We work with globular weak w-categories,
using a recent formulation for them and their computads proposed by Dean et al. [3]. We define
opposites of a weak w-category, changing the direction of all cells whose dimension belongs to a given
set. We also give an alternative construction of the hom w-categories of an w-category to that of
Cottrell and Fujii [2]. We then show that it has an left adjoint and that it preserves the property of
being cofibrant.

Computads are structures out of which one can generate weak w-categories. They consist of sets of
generators together with attachment maps, assigning a source and target to each generator. In Dean
et al. [3], first, the category Comp of computads and morphisms of w-categories is defined inductively
on dimension, together with an adjunction with the category Glob of globular sets
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Here, the functor Cell takes a computad to the underlying globular set of the w-category that it
generates, the elements of which are either generators, or formal applicatons of operations of weak
w-categories (compositions and coherences). Then w-categories are defined as the algebras for the
induced monad on globular sets, which was shown to agree with that of Batanin and Leinster [5]. Tt
was further shown by Garner [4] that w-categories generated by a computad are the cofibrant objects
for certain weak factorisation system.

We use a similar technique to construct the opposites and the homs of an w-category. We start
with an adjunction on the level of globular sets:
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where Glob,, is the category of globular sets with two chosen objects. The functor op is defined with
respect to a set of dimensions w C Ns(, by swapping the source and target of every element whose
dimension belongs to w. The functor 2 takes a globular set with two chosen objects to the globular
sets of elements between those objects, and the suspension XX is the globular set with two objects,
such that Q(XX) = X. We then observe that in both cases the left adjoint preserves the globular
pasting diagrams, which are the arities of the operations of weak w-categories. Using this observation,



we define the opposite and the suspension of a computad together with natural transformations, as
shown in the diagrams below:
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The mates of those natural transformations under the respective adjunctions give rise to morphisms
of monads, hence they lift as functors op : w Cat — w Cat and 2 : w Cat,, — w Cat. The functor op is
an equivalence of categories with itself as its inverse, and by the adjoint lifting theorem, the functor
Q) admits a left adjoint X.

Finally, we show that the functors op, 2 and ¥ preserve the cofibrant objects, by describing a
recognition principle for free w-categories on a computad. We also show that the opposite of a hom
w-category is the hom of the some opposite of the original w-category, as expected.
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