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Abstract. Given an monad T on a strict monoidal category (V,⊗, I), suitably coherent natural
transformations with components of the form χX,Y : T (X ⊗ Y ) → TX ⊗ TY and ι : TI → I com-
prise a structure known as an opmonoidal monad. In the presence of such structure, the category
of Eilenberg-Moore algebras VT for the underlying monad also inherits a monoidal structure [6, 8].
Similarly, braidings and symmetries also lift to categories of algebras under suitable compatibility con-
ditions. These results follow from two-dimensional monad theory, specifically the theory of Eilenberg-
Moore objects in 2-categories of strict algebras and lax morphisms [4]. Alternatively, they also follow
from the observation that the Eilenberg-Moore construction and products are both limits, and hence
commute with one another, and opmonoidal monads are monoids in the 2-category of monads [10, 11].

In this talk I will discuss how these results extend to the two-dimensional setting. In this setting,
the Eilenberg-Moore construction for pseudomonads is still a limit [3], however the theory of limits
for lax morphisms of algebras for three-dimensional monads is far more complicated and not as well-
developed [9]. Moreover, the appropriate monoidal structures on 2-categories [1] are now monoids in
a non-cartesian monoidal structure, and as such monoidality of the Eilenberg-Moore construction for
pseudomonads needs to be checked directly. Indeed, an important stepping stone is to check that the
Gray-tensor product actually extends to pseudomonads. Once we have done all of this we find that
the 2-category of pseudoalgebras VT [5] inherits a monoidal structure that is slightly weaker than the
original structure on V, with associativity and unit laws holding up to 2-natural isomorphisms which
satisfy the usual monoidal category axioms on the nose. We also describe similar liftings to pseudoal-
gebras for braidings, syllapses and symmetries that are suitably compatible with the pseudomonad
structure.

This talk is based on results in [7]. Motivating applications include two-dimensional linear alge-
bra and bicategorical models of linear logic [2]. This research is supported by EPSRC under grant
EP/V002325/2.
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