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Abstract. We are interested in free constructions of Lawvere theories and of symmetric operads from
syntactic structures. These respectively correspond to the syntax of cartesian and symmetric monoidal
second-order theories, and most generally arise from binding signatures. For a direct constructive
approach to these free constructions, it is best to consider Lawvere theories and symmetric operads
as substitution algebras modelling single-variable substitution.

In the cartesian case, one considers the object-classifier topos F = Set” (where T is the category
of finite cardinals and functions) as the ambient category for models. Here, a substitution algebra [4]
consists of a presheaf, X € F, a variable operation v : 1 — §(X), and a single-variable substitution
operation o : §(X) x X — X satisfying the following four axioms:
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In the above definition, (4, up, cont,swap) is a symmetric monad on F, induced by the structure of F,
and 35(A) = 6(A) x A is a strong endofunctor on F. Substitution algebras are equivalent to Lawvere
theories [4] and provide a finite equational presentation of Lawvere theories over F [5], in contrast to
their countably-sorted presentation as abstract clones.

Furthermore, F is the suitable environment for second-order cartesian theories, conservatively
extending Lawvere theories [1]. Binding signatures account for algebraic operations with variable
binding; they appear, for example, as abstraction in the lambda calculus and quantifiers in predicate
logic [3]. An endofunctor ¥ on F constructed using the product, coproduct, and § may be associated
with each binding signature. We prove that the free X-algebra over the presheaf of abstract variables,
Y(1) = F(1,—) : F — Set, is equipped with a canonical substitution algebra structure which is



induced by generalised parametrised structural recursion. This structure models the abstract syntax
of the binding signature and is initial in the category of X-algebras with compatible substitution
algebra structure.

For symmetric monoidal theories — for which the first-order theories are symmetric operads —
the appropriate ambient category for models is that of species of structures, B = Set®, where B is
the groupoid of finite cardinals [6, 7]. B has an additional monoidal tensor, namely the Day tensor
product, ®. This is used, instead of the cartesian product, to model linear pairing. The analogous
0 on B is only a symmetric endofunctor and does not respect linear pairings as in the cartesian
case. Instead, it is a derivative operator, equipped with a Leibniz canonical natural isomorphism,
5(A)® B+ A®6(B) — 6(A® B).

An endofunctor on B for a binding signature ¥ is constructed using the Day tensor, coproduct,
and the derivative §. Using the Leibniz isomorphism, we define a derived functor ¥’ : B2 — B together
with a canonical isomorphism §X(A) = 3/ (A, §(A)).

We define a linear substitution algebra (equivalent to that of [2]) as a presheaf Y € B together
with a variable operation v : I — §(Y") and a single-variable substitution operation ¢ : §(Y)®Y — Y
satisfying the following two axioms:
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Here, X5(A) = 0(A) ® A and X.(A4,B) = §(B) ® A+ 0(A) ® B. The category of linear substitution
algebras is equivalent to the category of symmetric operads (and, indeed, the category of simultaneous-
substitution monoids [8]).

We prove that the free Y-algebra over (1) = B(1,—) : B — Set has an induced linear substitu-
tion algebra that is initial in the category of Y-algebras with compatible linear substitution algebra
structure. The full study of second-order symmetric monoidal theories remains work in progress.
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