Lawvere Theories and Symmetric Operads as Substitution Algebras: Free constructions for Abstract Syntax

S. Ranchod

Marcelo Fiore (marcelo.fiore@cl.cam.ac.uk) University of Cambridge

Sanjiv Ranchod (sr2008@cl.cam.ac.uk) University of Cambridge

Abstract. We are interested in free constructions of Lawvere theories and of symmetric operads from syntactic structures. These respectively correspond to the syntax of cartesian and symmetric monoidal second-order theories, and most generally arise from binding signatures. For a direct constructive approach to these free constructions, it is best to consider Lawvere theories and symmetric operads as *substitution algebras* modelling single-variable substitution.

In the cartesian case, one considers the object-classifier topos $\mathcal{F} = \mathbf{Set}^{\mathbb{F}}$ (where \mathbb{F} is the category of finite cardinals and functions) as the ambient category for models. Here, a substitution algebra [4] consists of a presheaf, $X \in \mathcal{F}$, a variable operation $\nu : 1 \to \delta(X)$, and a single-variable substitution operation $\sigma : \delta(X) \times X \to X$ satisfying the following four axioms:

In the above definition, $(\delta, up, cont, swap)$ is a symmetric monad on \mathcal{F} , induced by the structure of \mathbb{F} , and $\Sigma_s(A) = \delta(A) \times A$ is a strong endofunctor on \mathcal{F} . Substitution algebras are equivalent to Lawvere theories [4] and provide a finite equational presentation of Lawvere theories over \mathcal{F} [5], in contrast to their countably-sorted presentation as abstract clones.

Furthermore, \mathcal{F} is the suitable environment for second-order cartesian theories, conservatively extending Lawvere theories [1]. Binding signatures account for algebraic operations with variable binding; they appear, for example, as abstraction in the lambda calculus and quantifiers in predicate logic [3]. An endofunctor Σ on \mathcal{F} constructed using the product, coproduct, and δ may be associated with each binding signature. We prove that the free Σ -algebra over the presheaf of abstract variables, $\mathcal{Y}(1) = \mathbb{F}(1, -) : \mathbb{F} \hookrightarrow \mathbf{Set}$, is equipped with a canonical substitution algebra structure which is induced by generalised parametrised structural recursion. This structure models the abstract syntax of the binding signature and is initial in the category of Σ -algebras with compatible substitution algebra structure.

For symmetric monoidal theories – for which the first-order theories are symmetric operads – the appropriate ambient category for models is that of species of structures, $\mathcal{B} = \mathbf{Set}^{\mathbb{B}}$, where \mathbb{B} is the groupoid of finite cardinals [6, 7]. \mathcal{B} has an additional monoidal tensor, namely the Day tensor product, \otimes . This is used, instead of the cartesian product, to model linear pairing. The analogous δ on \mathcal{B} is only a symmetric endofunctor and does not respect linear pairings as in the cartesian case. Instead, it is a derivative operator, equipped with a *Leibniz* canonical natural isomorphism, $\delta(A) \otimes B + A \otimes \delta(B) \xrightarrow{\cong} \delta(A \otimes B)$.

An endofunctor on \mathcal{B} for a binding signature Σ is constructed using the Day tensor, coproduct, and the derivative δ . Using the Leibniz isomorphism, we define a *derived* functor $\Sigma' : \mathcal{B}^2 \to \mathcal{B}$ together with a canonical isomorphism $\delta \Sigma(A) \cong \Sigma'(A, \delta(A))$.

We define a linear substitution algebra (equivalent to that of [2]) as a presheaf $Y \in \mathcal{B}$ together with a variable operation $v: I \to \delta(Y)$ and a single-variable substitution operation $\varsigma: \delta(Y) \otimes Y \to Y$ satisfying the following two axioms:

$$\begin{array}{cccc} I \otimes Y & \xrightarrow{\cong} Y & \delta\Sigma_{\rm s}(Y) \otimes Y \xrightarrow{\cong} \Sigma_{\rm s}'(Y, \delta(Y)) \otimes Y \xrightarrow{\operatorname{str}_{\rm s}} \Sigma_{\rm s}'(Y, \delta(Y) \otimes Y) \xrightarrow{\Sigma_{\rm s}'(\operatorname{id},\varsigma)} \Sigma_{\rm s}'(Y,Y) \\ & & & & \\ v \otimes \operatorname{id} \downarrow & & & & \\ \delta(\varsigma) \otimes \operatorname{id} \downarrow & & & & \\ \delta(\varphi) \otimes Y & & & & \\ \delta(\varphi) \otimes Y & & & & \\ \end{array}$$

Here, $\Sigma_{s}(A) = \delta(A) \otimes A$ and $\Sigma'_{s}(A, B) = \delta(B) \otimes A + \delta(A) \otimes B$. The category of linear substitution algebras is equivalent to the category of symmetric operads (and, indeed, the category of simultaneous-substitution monoids [8]).

We prove that the free Σ -algebra over $\mathcal{Y}(1) = \mathbb{B}(1, -) : \mathbb{B} \to \mathbf{Set}$ has an induced linear substitution algebra that is initial in the category of Σ -algebras with compatible linear substitution algebra structure. The full study of second-order symmetric monoidal theories remains work in progress.

References

- M. Fiore, Second-order and dependently-sorted abstract syntax, Proceedings of the 23rd Symposium on Logic in Computer Science, 57–68, 2008.
- [2] M. Fiore, Lie structure and composition, CT2014 slides, 2014.
- [3] M. Fiore, O. Mahmoud, Second-Order Algebraic Theories, Preprint, arXiv:1308.5409, 2013.
- [4] M. Fiore, G. Plotkin, D. Turi, Abstract syntax and variable binding, Proceedings of the 14th Symposium on Logic in Computer Science, 193–202, 1999.
- [5] M. Fiore, S. Ranchod A finite algebraic presentation of Lawvere theories in the object-classifier topos, Submitted, 2024.
- [6] A. Joyal, Une théorie combinatoire des séries formelles, Advances in Mathematics, 42:1–82, 1981.
- [7] A. Joyal, Foncteurs analytiques et espèces de structures, Combinatoire énumérative, Lecture Notes in Mathematics, vol. 1234, 126–159, 1986.
- [8] G.M. Kelly, On the operads of J.P. May, Reprints in Theory and Applications of Categories, No. 13, pp. 1–13, 2005.