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Abstract. The notion of ultracategory was introduced by Michael Makkai in [8] for the characteri-
sation of categories of models of pretoposes, an ample extension to (intuitionistic) first order theories
of Stone duality for Boolean algebras, providing a kind of Stone duality for first order theories—aka
coonceptual completeness. Recently, Jacob Lurie refined that notion in [7] producing another ap-
proach to the duality for pretoposes—the two notions of ultracategory appear to be different, though
no separating example has been produced yet. All this suggests that there are already two forms of
duality for first order theories, in line with Esakia’s duality as well as others, see [4, 2, 1].

A excellent, radically new, approach to ultrafilters, ultraproducts, ultraactegories, and pretoposes
can be found in [5] where the author also foresees a possible comparison of the two original notions of
ultracategories in future work.

In this work, we introduce a colax idempotent pseudomonad on an ultracompletion 2-functor
on the 2-category Cat of small categories. Given a (small) category C , write U(C ) for the category
which consists of following data:

Objects are triples (I,U , (ci)i∈I) where U is an ultrafilter on the set I, and (ci)i∈I is an I-indexed
family of objects in C .

An arrow [V, f, (gv)v∈V ]: (I,U , (ci)i∈I) → (J,V, (dj)j∈J) is represented by a triple of a set V ∈ V,
a function f :V → I such that the inverse image of a set in U is a set in V1, and a family
(gv: cf(v) → dv)v∈V of arrows in C . Two representatives (U, f, (gv)v∈V ) and (U ′, f ′, (g′v)v∈V ′)
are equivalent if gv = g′v for all v ∈ V ∩ V ′.

Composition of arrows is given componentwise.

Remark. Let T denote a terminal category. The ultracompletion U(T ) is (equivalent to) the opposite
of the category UF of ultrafilters of [5]. More generally, U(C ) is equivalent to

(
UF Fam(Cop)

)op, where
Fam is the usual coproduct completion of a category.

The assignment C � // U(C ) extends to a 2-functor U:Cat //Cat, which we call ultracompletion .
We briefly introduce the rest of the structure on the ultracompletion functor (write T for a fixed

one-element set): for a fixed category C , the unit functor νC :C // U(C ) takes an object c to the triple
(T, {T}, (c)) consisting of a one-object family. The multiplication functor

U(U(C ))
µC // U(C )

(I,U , (Ji,Vi, (cj)j∈Ji
)i∈I)

� // (
∑

i∈I Ji,
∑

U Vi, (c(i,j))(i,j)∈
∑

i∈I Ji
)

1In other words, f−1:℘(I) → ℘(J) maps U ⊆ ℘(I) into V ⊆ ℘(J), see [5].



which employs the indexed sum of ultrafilters, see [5]. It is easy to see that they provide the data for
a pseudomonad U on Cat . Finally we introduce a natural family of natural transformations

(I,U , ((T, T , (ci)))i∈I)

(I,U , (ci)i∈I)
=

..

�
00

U(C )

U(νC )
//

νU(C)

//
U(U(C ))•λC

OO

(T, T , (I,U , (ci)i∈I))

[I,!,[T,ki,(idci
)]i∈I ]

OO

where ki:T → I is the constant function with value i.
Theorem. The quadruple U := (U, µ, ν, λ) is a colax idempotent pseudomonad on Cat.

The ultracompletion functor can be connected with both notions of ultracategories. For the sake
of clarity, we shall denote by M-Ultcat, the 2-category of ultracategories, ultrafunctors, and natural
ultra-transformations in the sense of Makkai’s [8], and by L-Ultcat, the 2-category of ultracategories,
ultrafunctors, and natural ultra-transformations in the sense of Lurie’s [7].
Proposition. Let C be a category.
(i) The category U(C ) is an ultracategory in the sense of Makkai, and the 2-functor U:Cat //Cat
factors through the forgetful 2-functor M-Ultcat //Cat.
(ii) The category U(C ) is an ultracategory in the sense of Lurie, and the 2-functor U:Cat //Cat
factors through the forgetful 2-functor L-Ultcat //Cat.

Corollary. Each U-pseudoalgebra U(C ) α //C bears a structure of ultracategory in the sense of
Makkai, and a structure of ultracategory in the sense of Lurie, in such ways that each assignment
extends to a faithful 2-functor from U-PsAlg into M-Ultcat and into L-Ultcat, respectively.

Finally, we have a result along the lines of Theorem 4.1 of [8].
Theorem. Let P be a pretopos. The evaluation functor ev:P //U(PreTop(P ,Set),Set) is an
equivalence of categories.

The next steps will consider more closely the relationship between U-pseudoalgebras and ultracat-
egories in the sense of Makkai, the connections with the work of Garner’s in [5], and the abstract part
of duality in line with previous work as in [3, 6, 9].
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