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Sketches and classifying Logoi

12:30
13:00

Fiore

An algebraic combinatorial approach to the abstract syntax of opetopic structures

13:00
15:00

Lunch

15:00
20:00

Excursion
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Thursday

09:30
10:00

Rosolini

Ultracompletions

10:00
10:30

North

Coalgebraic enrichment of categorical W-types

10:30
11:00

Taylor

Ordinals as Coalgebras: some missing categorical techniques

11:00
11:30

Coffee Break

Aula 2 Aula Magna Aula 3

11:30
12:00

Štěpán

Lax adjunctions and
lax-idempotent pseudomonads

Roff

Bigraded path homology
and the magnitude-path

spectral sequence

Bardomiano Mart́ınez

The language
of a model category

12:00
12:30

Lucatelli Nunes

Doubly-infinitary
distributive categories

Doña Mateo

Pushforward monads

Jurka

An enriched small object
argument over a cofibrantly

generated base

12:30
13:00

Ranchod

Lawvere theories
and symmetric operads
as substitution algebras:

Free constructions
for abstract syntax

Arkor

The pullback theorem for
(relative) monads

Leoncini

Homotopy colimits enriched
over a general base

13:00
15:00

Lunch

15:00
15:30 Paré

The difference calculus for functors on presheaves15:30
16:00

16:00
16:30

Adámek

What is a congruence?

16:30
17:00

Coffee Break

17:00
18:00

Poster session

Baković Bartoš Chabertier Cioffo

Das Duvieusart Iwaniack Krishna

Lee Li Luckhardt Miranda

Moreau Pistalo Prezado Reimaa

Romö Saadia Vokř́ınek Zwanziger

20:30 Social Dinner
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Friday

09:30
10:00 Joyal

Free bicompletion of categories and ∞-categories10:00
10:30

10:30
11:00

Berger

Perfect moment categories, cocartesain comonads, and Joyal duality

11:00
11:30

Coffee Break

11:30
12:00

van den Berg

Recent progress in the theory of effective Kan fibrations in simplicial sets

12:00
12:30

Yuksel

Toposes vs Localic Groupoids: A unified treatment of covering theorems

12:30
13:00

Sava

The derivator associated to a dg-category

13:00
15:00

Lunch

Aula 2 Aula Magna Aula 3

15:00
15:30

López Franco

Slack Hopf monads

Loregian

Bicategories for automata
theory

Hora

Quotient toposes of discrete
dynamical systems

15:30
16:00

Ramos Pérez

Modules over
invertible 1-cocycles

Reader

Cotraces and inner product
enrichment of bicategories

Osmond

On a (terminally connected,
pro-etale) factorization system

for geometric morphisms

16:00
16:30

Ray

Categories of modules,
comodules and contramodules

over representations

Di Giorgio

First-Order Bicategories:
a new categorical perspective

on first-order logic

Kawase

Formalizing accessibility and
duality in a virtual equipment

16:30
17:00

Coffee Break

17:00
17:30

Femić

Gray multicategories and
left and right Gray
skew-multicategories

Caviglia

2-stacks over bisites

Clarke

The algebraic weak factorisation
system of twisted coreflections

and delta lenses

17:30
18:00

Mancini

On the representability of
actions of non-associative

algebras

Ko

Limits in Enhanced
Simplical Categories

Sharma

A 2-categorical model of
oriented 1-cobordisms.
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Saturday

09:30
10:00 Garner

A monadic approach to non-commutative Stone duality10:00
10:30

10:30
11:00

Awodey

Algebraic type theory

11:00
11:30

Coffee Break

11:30
12:00

Lucyshyn-Wright

V-graded categories and V-W-bigraded categories:
Functor categories and bifunctors over non-symmetric bases

12:00
12:30

Hofmann

On predicate liftings and lax extensions of functors

12:30
13:00

Tholen

Cauchy convergence for normed categories

12
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A monadic approach to non-commutative Stone duality

R. Garner

Richard Garner (richard.garner@mq.edu.au)
Macquarie University

Eli Hazel (eli.hazel@students.mq.edu.au)
Macquarie University

Abstract. Boolean algebras axiomatise the theory of the set-theoretic operations ∩, ∪, ( )c and ∅
on power-set lattices; Boolean semilattices do the same thing for the operations ∩, ∪, \ and ∅; while
the left skew Boolean algebras of Leech [4] do the same again for the operations ∨,∧, \ and ∅ on sets
of partial functions Pfn(X,Y ) defined by:

f ∧ g = f |domf∩domg ,

f \ g = f |domf\domg ,

∅ = undefined everywhere,

and f ∨ g(x) =





g(x) if x ∈ dom(g)

f(x) if x ∈ dom(f) \ dom(g)

undefined otherwise.

The axioms resemble those for Boolean semilattices; the main difference is that ∨ and ∧ are not commu-
tative, so that left skew Boolean algebras are a non-commutative generalisation of Boolean semilattices.

As is well known, the category of Boolean algebras is contravariantly equivalent to the category of
Stone spaces, i.e., totally disconnected compact Hausdorff spaces; this is Stone duality. A very mild
generalisation of this shows that Boolean semilattices are equivalent to pointed Stone spaces. Much
more far-reaching is the non-commutative Stone duality of Kudryavtseva [3], which shows that the
category of left skew Boolean algebras is equivalent to the category of sheaves on pointed Stone spaces.

Kudryavtseva’s result is extremely pretty, but proving it is delicate and requires a fair amount of
calculation. In this talk I will describe a different approach to its establishment which, if it perhaps
does not simplify the calculations much, at least serves to justify them from category-theoretic first
principles. This approach reconstructs non-commutative Stone duality from an adjunction

SBAop

R
//

oo L

⊥ Poly

between the category SBA of left skew Boolean algebras and the category Poly = Fam(Setop) of
polynomial endofunctors of Set, induced by homming into the polynomial ⊤ : 1→ 2.

As with any adjunction, one can consider the induced monad T on Poly, and the comparison
functor K : SBAop −→ T-Alg. The monad T turns out to be Ellerman’s ultrasheaf monad [1], whose
algebras were characterised by Kennison [2] as the category ShvKH of sheaves on compact Hausdorff
spaces; and the adjunction L ⊣ R turns out to be of descent type, so that K : SBAop −→ ShvKH
is fully faithful. It is now simply a matter of characterising the image of K in order to reconstruct

2 INVITED TALKS

09:30 - Saturday

14 Full Schedule



Kudryavtseva’s result. Part of the interest here is in establishing that L ⊣ R is indeed of descent type;
one could simply calculate away, but instead we appeal to a general, and apparently new, result which
provides sufficient conditions for an adjunction to be of descent type.

References
[1] Ellerman, D. P. Sheaves of structures and generalized ultraproducts. Annals of Mathematical

Logic (1974), 163–195.

[2] Kennison, J. F. Triples and compact sheaf representation. Journal of Pure and Applied Algebra
20 (1981), 13–38.

[3] Kudryavtseva, G. A refinement of Stone duality to skew Boolean algebras. Algebra Universalis
67, 4 (2012), 397–416.

[4] Leech, J. Skew Boolean algebras. Algebra Universalis 27, 4 (1990), 497–506.
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Dagger category theory

C. Heunen

Chris Heunen (chris.heunen@ed.ac.uk)
University of Edinburgh

Abstract.
A dagger on a category associates to every morphism f : A → B a morphism f† : B → A going

in the opposite direction in such a way that f†† = f . Dagger categories are useful in many areas,
including operator algebra, homological algebra, Bayesian inference, reversible computing, and quan-
tum theory. Dagger categories can of course be studied using ordinary category theory. However,
in many important ways, dagger categories behave very differently than ordinary categories. The
situation compares to graph theory: directed and undirected graphs share a large part of theory, but
many important results also distinguish them.

My goal in this talk is to convince you that dagger category theory is a very interesting area of
study that relies on, but differs from, ordinary category theory. (For example, it is not just formal
category theory in a universe other than Cat or enriched category theory over a base other than Set.)

We start by discussing examples. Any groupoid is an example of a dagger category, but f† need
not be the inverse of f ; think about the transpose of a matrix, for example. The point is then made
by showcasing three topics.

• The theory of monads works best when all structure respects the dagger: the monad and
adjunctions should preserve the dagger. But for a smooth theory that is not enough. The monad
and its algebras should should additionally satisfy the Frobenius law. Then any monad resolves
as an adjunction, with extremal solutions given by the categories of Kleisli and Frobenius-
Eilenberg-Moore algebras, which again have a dagger.

• There is a notion of limit for dagger categories that works well: it subsumes special cases such as
dagger biproducts and dagger kernels; dagger limits are unique up to unique dagger isomorphism;
a wide class of dagger limits can be built from a small selection of them; dagger limits of a fixed
shape can be phrased as dagger adjoints to a diagonal functor. However, dagger categories with
‘too many’ dagger limits degenerate, and there is a more useful notion of dagger completeness.

• An important example is the dagger category of Hilbert spaces, with either continuous linear
maps or linear contractions. In many ways it resembles the category of vector spaces, but it is
not abelian, and the difference lies precisely in the dagger. We discuss a characterisation of this
category by axioms that are elementary dagger-category-theoretic in nature and do not refer to
analytic notions such as complex numbers, norm, continuity, convexity, or dimension.
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[1] C. Heunen and M. Karvonen, Monads on dagger categories, Theory and Applications of Categories
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Free bicompletion of categories and of ∞-categories

A. Joyal

André Joyal (joyal.andre@uqam.ca)
Université du Québec à Montréal

Abstract.
Whitman’s theory of free lattices can be extended to free bicomplete categories. I will present an

extension of this theory to free bicomplete ∞-categories. The statements and proofs are very similar.
The general statement depends on the notion of ∞-category co-complete with respect to a regular
class of small categories introduced by Charles Rezk.
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From Yoneda’s additive regular spans to fibred cartesian
monoidal opfibrations: a route towards a 2-dimensional

cohomology of groups

S. Mantovani

Sandra Mantovani (sandra.mantovani@unimi.it)
Università degli studi di Milano

Abstract.
In his pioneering 1960 paper [7], Nobuo Yoneda introduced the notion of additive regular span

in developing a formal categorical setting useful to classify n-fold extensions in a suitable additive
context. As an application of his Additive Classification Theorem, he proved that functors Extn :
Aop × A → Ab, defined through connected components of n-fold extensions, are additive in both
variables, with A abelian category. This result made it possible to introduce cohomology groups in
abelian categories without projectives or injectives.

When moving to a non-additive context, as the category Gp of groups, to interpret cocycles we
need crossed n-fold extensions (this approach was adopted also to give an interpretation of cohomology
groups in an intrinsic context, as the one of strongly semi-abelian categories in [6], see also [1]). This
change carries out the necessity of breaking the symmetry in Yoneda’s setting and the need of giving
a fibrational interpretation of regular spans, as decribed in [2].

The main goal of this talk is to show how it is possibile to extend Yoneda’s Additive Classification
Theorem in two different directions. Indeed, we are able to provide an abstract setting which from one
side allows to treat the non-additive case, such as the one in Gp. On the other, it makes it possible
to grow up in dimension, obtaining symmetric 2-groups in place of just abelian groups.

The key notion we eventually need is that of fibred cartesian monoidal opfibration

X P //

F ��

Y

G��
B

which turns out to be a cartesian object in the 2-category OpFib(Fib(B)) of internal opfibrations in the
category of fibrations over a fixed category B. After providing a characterization of such morphisms
P : (X , F )→ (Y, G) in OpFib(Fib(B)), it turns out that, for each b in B, the restriction

Pb : Xb → Yb

is a cartesian monoidal opfibration, as defined in [4].

Joint work with A. S. Cigoli and G. Metere
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In particular, when for each b in B, Pb is an opfibration fibred in groupoids and Yb is an additive
category, then it is possible to show that each fibre of Pb is endowed with a structure of symmetric
2-group and, as b varies in B, “change-of-base” functors are symmetric monoidal.

Now, suppose we start with the morphism in Fib(Gp)

XExt
Π //

Π0 ##

Mod

( )0{{
Gp

where XExt is the category of crossed extensions of groups

X : 0 // A
j // G2

∂ // G1
p // B // 1 (1)

Mod is the category of group-modules, and the functors are given by: Π(X) = (B,A), Π0(X) = B,
(B,A)0 = B.

Here we are not in the situation described above, since, for any group B the restrictions ΠB are
not fibred in groupoids. But, we can move in the desired context by factorizing Π through a suitable
category of fractions, as proved in [3]. This way we can apply the results above and define, for any
B-module A, its symmetric 2-group of cohomology H3(B,A), whose structure is described in [5].

References
[1] D. Bourn,The tower of n-groupoids and the long cohomology sequence, J. Pure Appl. Algebra 62

(1989) 137–183.
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Adv. Math. 360 (2020) 106899.

[3] A. S. Cigoli, S. Mantovani, and G. Metere, Discrete and conservative factorizations in Fib(B),
Appl. Categ. Structures 29 (2021), 249–265.

[4] A. S. Cigoli, S. Mantovani, and G. Metere, On pseudofunctors sending groups to 2-groups, Mediterr.
J. Math. 20 (2023), 25pp.

[5] A. S. Cigoli, S. Mantovani, and G. Metere, The third cohomology 2-group, Milan J. Math. 91
(2023), 315 –330.

[6] D. Rodelo, Directions for the Long Exact Cohomology Sequence in Moore Categories, Appl. Categ.
Structures 17 (2009), 387–418.
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The difference calculus for functors on presheaves

R. Paré

Robert Paré (pare@mathstat.dal.ca)
Dalhousie University

Abstract.
We start with the one-variable case, developing a difference calculus for endofunctors F of Set.

Like in the classical difference calculus for functions R → R, a discrete version of the derivative, we
define ∆[F ] : Set→ Set by

∆[F ](X) = F (X + 1) \ F (X).

The “\” is set difference so ∆[F ] shouldn’t be expected to be functorial, but it is for a rather large
class of functors, the taut functors of Manes. (A functor is taut if it preserves inverse images or, put
differently, preserves pullbacks along monos.)

We develop the difference calculus for these, obtaining limit and colimit rules analogous to the
classical product and sum rules. We get a lax chain rule where none exists for mere functions, and a
Newton summation formula which appears as a left adjoint. Many interesting classes of functors are
taut, polynomial and analytic ones for example, and for these we give explicit descriptions of their
differences.

We then proceed to the multivariable case, i.e. functors between presheaf categories. The general-
ization of tautness we need is the preservation of complemented subobjects and their inverse images.
We then get the partial differences ∆A[F ] by replacing the 1 in the definition of ∆[F ] by the repre-
sentable at A. All the ∆A together form a profunctor, ∇[F ], the Jacobian of F . We then establish
similar rules as in the one-variable case and study some examples.
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Limits and colimits in (∞, n)-category theory

M. Rovelli

Lyne Moser (lyne.moser@ur.de)
Universität Regensburg

Nima Rasekh (rasekh@mpim-bonn.mpg.de)
Max Planck Institute for Mathematics

Martina Rovelli (mrovelli@umass.edu)
University of Massachusetts Amherst

Abstract. The notion of limit for a diagram valued in an ordinary category is a very fundamental one
and allows one to encode the universal property of a variety of constructions of interest. This viewpoint
becomes even more relevant in the context of higher category theory, where explicit constructions are
often challenging to describe, given the infinite amount of coherence involved. For this reason, it
becomes crucial to have at one’s disposal a meaningful and well-behaved notion for the (possibly
weighted) limit of a diagram valued in an n-category or an (∞, n)-category. We will first discuss the
universal property for (∞, n)-limits that naturally arises from enriched category theory (in the sense
of Borceux-Kelly and Shulman), and mention some of the difficulties which arise in this particular
context. We will then propose an alternative formulation, and phrase the universal property for the
limit of a diagram valued in an (∞, n)-category in terms of an appropriate double (∞, n−1)-category
of cones over such diagram, generalizing at once the viewpoint taken for 2-limits by Grandis-Paré, for
n-limits by Moser-Sarazola-Verdugo, and for (∞, 1)-limits by Joyal and Lurie. This is joint work with
Moser and Rasekh.

References
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What is a Congruence?

J. Adámek

Jiří Adámek (J.Adamek@tu-bs.de)
Czech Technical University Prague and Technical University Braunschweig

Abstract.

1 Introduction
Lawvere’s thesis contains a characterization of varieties of classical (finitary, one-sorted) algebras as
categories with (1) coequalizers and kernel pairs, (2) an abstractly finite, regularly projective strong
generator, and (3) effective congruences: every congruence (a reflexive, symmetric and transitive
relation) is the kernel pair of some morphism. The concept of a congruence was generalized to the
enriched setting in the fundamental paper [4], see also [5]. In case of enrichement over Pos (posets and
monotone maps) or Met (metric spaces and non-expanding maps) we now present a much simpler
concept called subcongruence for Pos and procongruence for Met (in order to distinguish them from
the congruence in op. cit.).

2 Congruences in an order-enriched category
The role of a kernel pair of a morphism f : X → Y is played here by a subkernel pair : a universal
pair r, r′ : R → X with respect to f · r ≤ f · r′. Every subkernel pair is a relation on X, i.e. the
derived morphism R→ X2 is an order-emedding, which is reflexive and transitive (and of course not
symmetric). It is even order-reflexive: every parallel pair u, u′ : U → X with u ≤ u′ factorizes through
r, r′.

Asubregular epimorphism is a morphism which is the coinerter of a reflexive parallel pair.

Definition. A subcongruence on an object is an order-reflexive and transitive relation.

Let Σ be a classical (finitary) signature and denote by Σ-Pos the category of ordered algebras
with monotone operations (and monotone homomorphisms). It has effective subcongruences: every
subcongruence is the subkernel pair of some morphism.

More generally, every variety of ordered algebras, a full subcategory presented by a set of inequalities
between terms, has effective subcongruences.

Here is the main result of [1] (improving that of [3]). An object is subregularly projective if its
hom-functor preserves subregular epimorphisms.

Theorem. A Pos-enriched category is equivalent to a variety of ordered algebras iff it has (1)
reflexive coequalizers and subkernel pairs, (2) an abstractly finite, subregularly projective strong
generator, and (3) effective subcongruences.
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3 Congruences in a metric-enriched category
For a real number ε ≥ 0 the ε-kernel pair of a morphism f : X → Y is a universal pair rε, r′ε : Rε → X
with respect to d(f · rε, f · r′ε) ≤ ε. Every such pair is a relation: the derived morphism to X2 is an
isometric embedding.

We introduce a weight B : Bop →Met such that every morphism f has a kernel diagram Df : B →
Met collecting all ε-kernel pairs of f . Every colimit of a diagram weighted by B is determined by a
morphism. A proregular epimorphism is a morphism determining some colimit weighted by B. An
object is proregularly projective if its hom-functor preserves proregular epimorphisms.

The kernel diagram Df consists of parallel pairs that are reflexive and symmetric relations. They
are also collectively transitive, and satisfy a continuity condition (expressing the fact that the map
assigning Rε to each ε ≥ 0 preserves limits). A procongruence is a diagram weighted by B having all
of those properties.

Mardare et al. [6] introduced varieties (aka 1-basic varieties) of quantitative algebras: they are
categories of metric-enriched algebras presented by ε-equations between terms. We prove in [2] that
up to equivalence they are precisely the Met-enriched categories which have (1) reflexive coequalizers
and ε-coinserters, (2) an abstractly finite, proregularly projective strong generator, and (3) effective
procongruences: every procongruence is the kernel diagram of some morphism.
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[1] J. Adámek, Categories which are varieties of classical or ordered algebras, preprint
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Eilenberg-Moore categories and quiver representations of
monads and comonads

D. Ahuja

Divya Ahuja (divyaahuja1428@gmail.com)
Department of Mathematics, Indian Institute of Technology, Delhi

Abhishek Banerjee (abhishekbanerjee1313@gmail.com)
Department of Mathematics, Indian Institute of Science, Bangalore

Surjeet Kour (koursurjeet@gmail.com)
Department of Mathematics, Indian Institute of Technology, Delhi

Samarpita Ray (ray.samarpita31@gmail.com)
Stat-Math Unit, Indian Statistical Institute, Bangalore

Abstract. Let Z be a scheme. Then, a famous result of Gabber (see, for instance, [4, Tag 077P])
shows that the category QCoh(Z) of quasi-coherent sheaves over Z is a Grothendieck category. If S
is a scheme and Z is an algebraic stack over S, the category QCoh(Z) of quasi-coherent sheaves over
Z is also a Grothendieck category (see, for instance, [4, Tag 06WU]).

In this paper, we prove a Gabber type result for representations of quivers in Eilenberg-Moore
categories of monads. We develop a categorical framework for studying module representations taking
values in Eilenberg-Moore categories of monads. For this, we generalize the usual setup of sheaves
in several different ways. First, we replace the system of affine open subsets of a scheme by a quiver
Q = (V,E), i.e., a directed graph Q with a set of vertices V and a set of edges E. This is motivated
by Estrada and Virili [3] who studied modules over a representation A : X −→ Add of a small
category X taking values in small preadditive categories. Thereafter, we replace rings by monads
over a given Grothendieck category C. As such, we consider a representation U : Q −→ Mnd(C) of
the quiver Q taking values in the category Mnd(C) of monads over C. Finally, we replace the usual
module categories over rings by Eilenberg-Moore categories of the monads over C. By using systems
of adjoint functors between Eilenberg-Moore categories, we obtain a categorical framework of modules
over monad quivers. Our main objective is to give conditions for the category of modules over monad
quivers to be Grothendieck categories, which play the role of noncommutative spaces.

We refer to a representation U : Q −→ Mnd(C) as a monad quiver. To study modules over U ,
we combine techniques on monads and adapt methods from earlier work in [1], [2] which are inspired
by the cardinality arguments of Estrada and Virili [3]. One of our key steps is finding a modulus like
bound for an endofunctor U : C −→ C in terms of κ(G), where G is a generator for C and κ(G) is a
cardinal such that G is κ(G)-presentable. As with usual ringed spaces, we have to study two kinds of
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module categories over a monad quiver. The first behaves like a sheaf of modules over a ringed space.
The second consists of modules that are cartesian, which resemble quasi-coherent sheaves. Another
feature of our paper is that we study modules over a monad quiver in two different orientations, which
we refer to as “cis-modules” and “trans-modules.” We establish similar results for comodules over a
comonad quiver V : Q −→ Cmd(C) taking values in comonads over C. We conclude with rational
pairings of a monad quiver with a comonad quiver, which relate comodules over a comonad quiver to
coreflective subcategories of modules over monad quivers.
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The pullback theorem for (relative) monads

N. Arkor

Nathanael Arkor (n@arkor.co)
Tallinn University of Technology

Dylan McDermott (dylan@dylanm.org)
Reykjavik University

Abstract.
The pullback theorem for monads states that, given a monad T on a category E, the category

of T -algebras may be constructed by a certain pullback involving the category of free T -algebras, as
given below [1].

Alg(T ) [Kl(T )op,Set]

E [Eop,Set]

uT [kop
T ,Set]

yE

⌟

Here, uT : Alg(T ) → E is the forgetful functor, yE : E → [Eop,Set] is the Yoneda embedding, and
kT : E → Kl(T ) is the Kleisli inclusion.

As has been repeatedly demonstrated in recent years, many classes of well-behaved monads admit
a refinement of the pullback theorem, in which the category of algebras is expressed as a pullback
over the nerve nj : E → [Aop,Set] of some dense functor j : A → E. (In particular, the classical
pullback theorem is recovered by taking j = 1E .) Such characterisations are frequently referred to as
nerve theorems, and endow the monad and its category of algebras with particularly nice properties.
Examples of classes of monads satisfying respective nerve theorems include familially representable
monads [2], monads with arities [3, 4, 5], J -ary monads [6], and nervous monads [7, 8]. It is natural
to wonder to what extent these phenomena are related.

In this talk, I will explain how, by generalising the pullback theorem from monads to relative
monads [9, 10], we may view each of the aforementioned nerve theorems as particular instances of a
more (and, indeed, maximally) general phenomenon.

This talk is based on the recent preprint [11].
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Algebraic Type Theory

S. Awodey

Steve Awodey (awodey@cmu.edu)
Carnegie Mellon University

Abstract.
A type theoretic universe π : E → U in a locally cartesian closed category C (as in [1]) can

be shown to bear an algebraic structure resulting from the type-forming operations of unit type,
dependent sum, and dependent product (as shown in [2]). Specifically, the associated polynomial
endofunctor Pπ : C → C has the structure of a monad, for which π is itself an algebra.

This structure is here abstracted to form the concept of a “Martin-Löf algebra”. Any ML-algebra is
shown to model Martin-Löf type theory, and the free ones then have special type-theoretic properties.
The general theory of ML-algebras is a “proof-relevant” or categorified version of the theory of Zermelo-
Fraenkel algebras from the algebraic set theory of Joyal & Moerdijk [3].

For example, any representable natural transformation π : E → U of presheaves, as in [2], is
necessarily tiny in the sense of Lawvere: the right adjoint push-forward functor π∗ : C/E → C/U has
a further right adjoint. It follows that the polynomial endofunctor Pπ : C → C is cocontinuous and
therefore admits an algebraically free monad structure, by a familiar iteration [4]. The (type theory
modeled by the) colimit πω : Eω → Uω is then the free completion under Σ-types of (that modeled
by) π : E → U . Various other type-theoretic constructions are similarly related to functorial algebraic
ones.

This material is based upon work supported by the Air Force Office of Scientific Research under
awards number FA9550-21-1-0009, FA9550-20-1-0305 and FA9550-15-1-0053. Submitted to CT2024.
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Formal category theory -
50 years after

I. Baković

Igor Baković (ibakovicl@gmail.com)

Abstract.
Ever since the introduction of formal category theory 50 years ago by Gray in his monograph [9]

there are still surprisingly few papers on the subject. I will describe the state of affairs of the subject
today and compare the existing approaches to formal category theory by means of enhanced category
theory which was initiated by Lack and Shulman in [12] who developed a theory of what we could call
1-enhanced 2-categories. A deeper reflection tells us that the enhancement itself can be considered
either as

• a property of 1-cells in a 2-category

• a process of assigning properties to objects of the 2-category C at

I will show that besides its cartesian monoidal structure, the category F whose objects are injective
on objects and fully faithful functors which Lack and Shulman called full embeddings has a much
richer structure given by other closed (but not monoidal) structures. One of the consequences of this
fact is that the following notions are essentially equivalent:

(i) A 2-category with a right ideal of 1-cells

(ii) A category enriched over the closed category Fc whose objects are functors that are fully faithful
and injective on objects which I christened - enhanced categories

In this way any 2-category with Yoneda structure can be naturally seen as an enriched category in
the sense of Eilenberg and Kelly [6] and the theory developed by Street and Walters in [13] has a
natural interpretation in this context. I will describe the construction of categories enriched in closed
2-categories which is complementary to the construction of Garner and Shulman [8] of categories
enriched in a monoidal bicategory. Along the way, I will show how (weak) equipments in the sense
of Wood [14] can also be seen as enriched categories and I will prove that they are objects of the
strict double category which has a natural Gray-like tensor product. Finally, I will show how the
development of these ideas give a natural solution to more than 60 years old unavailable construction
by Bénabou - the reflection of morphisms of bicategories into strict ones.
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The language of a model category

C. Bardomiano Martinez

Cesar Bardomiano Martinez (cbard035@uottawa.ca)
University of Ottawa

Simon Henry (shenry2@uottawa.ca)
University of Ottawa

Abstract.
Quillen model categories are a cornerstone for modern homotopy theory. These categories, orig-

inally devised to capture homotopical properties of categories like topological spaces, simplicial sets
or chain complexes, have gained relevance for giving a way to construe higher categories which are of
great importance, for example, in algebraic topology and geometry.

In this talk, we will see that model categories also have logical information on their own in the
following sense: Given any model category, we can associate to it a class of first-order formulas referring
to the fibrant objects of the category. For example, the associated language of the category of small
categories, equipped with its canonical model structure, coincides with language for categories defined
by Blanc [1] and Freyd [2], whose central feature is that it respects the equivalence principle.

Similarly, the language we associate to a model category respects the appropriate version of the
equivalence principle: two homotopically equivalent objects satisfy the same formulas and replacing
parameters by homotopically equivalent ones does not change the validity of a formula.

Finally, we will show that for M and N two Quillen equivalent model categories, their associated
languages are, suitably, equivalent.
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Categorical approaches to projective Fraïssé theory

A. Bartoš

Adam Bartoš (bartos@math.cas.cz)
Institute of Mathematics, Czech Academy of Sciences

Abstract.
Fraïssé theory, understood as the study of ultrahomogeneous structures, is classical in model

theory [5]. Recall that a first-order structure U is ultrahomogeneous if every isomorphism f : A→ B
between finitely generated substructures A,B ⊆ U can be extended to an automorphism f̃ : U → U .
Most classical countable ultrahomogeneous structures include the linear order of rationals, the random
graph, and the rational Urysohn metric space.

It is natural to formulate Fraïssé theory in the language of category theory. This allows for clear
and general definitions and proofs capturing the essence of the constructions involved. For example,
given a pair of categories K ⊆ L, we call an L-object U homogeneous in ⟨K,L⟩ if for every pair of
L-maps from a K-object f, g : x→ U there is an automorphism h : U → U such that h ◦ g = f . Based
on work of Droste and Göbel [4] and Kubiś [7], the core of Fraïssé theory can be summarized in the
following two theorems. We say that ⟨K,L⟩ is a free completion (or more precisely, a free sequential
cocompletion) if L essentially arises from K by freely adding colimits of K-sequences.

Theorem (Characterization of the Fraïssé limit). Let ⟨K,L⟩ be a free completion and let U be an
L-object. Then the following are equivalent.

(1) U is cofinal and homogeneous in ⟨K,L⟩,
(2) U is cofinal and injective in ⟨K,L⟩,
(3) U is the L-colimit of a Fraïssé sequence in K.

Moreover, such U is unique and cofinal in L, and every K-sequence with L-colimit U is Fraïssé in K.
Such U is called the Fraïssé limit of K in L.

Theorem (Existence of a Fraïssé sequence). Let K ̸= ∅ be a category. Then K has a Fraïssé sequence
if and only if

(1) K is directed,

(2) K has the amalgamation property,

(3) K has a countable dominating subcategory.

Such K is called a Fraïssé category.

In 2006, Irwin and Solecki [6] introduced projective Fraïssé theory, where instead of embeddings of
first-order structures, quotients of topological graphs are considered. The (projectively) homogeneous
structure is obtained as a limit of an inverse sequence of quotient maps, instead of taking the union of
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an increasing chain. The particular limit obtained by Irwin and Solecki was the Cantor space endowed
with a special closed equivalence relation with the quotient space being the pseudo-arc, a well-known
continuum. Projective Fraïssé theory fits the categorical framework presented above (with taking
opposite categories everywhere), but the Fraïssé limit obtained is a pre-space (profinite space with a
closed equivalence relation), not the actual space (the induced quotient).

Recently, we have considered alternative approaches to projective Fraïssé theory. With W. Kubiś
we have developed Fraïssé theory of MU-categories [3], a specific generalization of metric-enriched
categories tailored to work with categories of metrizable compacta and continuous surjections. Here
the key notions are approximate in the sense that defining diagrams are not commuting exactly, but
up to ε for arbitrary ε > 0. In this setup we have obtained the pseudo-arc as well as P -adic pseudo-
solenoids as Fraïssé limits directly. Here the category of small objects K consists of all continuous
surjections of the unit interval and all continous surjections of the unit circle whose degree uses primes
only from P , respectively, so the small objects are not finite and discrete any more.

Another approach, which is a joint work in progress with T. Bice and A. Vignati [1, 2], we start
with a category K of finite graphs, as in the classical projective Fraïssé theory, but we allow relations
instead of functions as morphisms, and instead of taking the limit of an inverse sequence, we turn
the sequence into a graded ω-poset and take its spectrum. This way we can construct compact spaces
directly from finite graphs, but categorical limit is replaced by an ad hoc construction. Recently
we found out that the spectrum can be to some extent viewed as a limit, by utilizing the notion of
lax-adjoint limits [8] in poset-enriched categories.

In the talk I will give an overview of the three approaches and discuss new ideas about viewing
the spectrum as a unital lax-adjoint limit.
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Invertible cells in weak ω-categories

T. Benjamin

Thibaut Benjamin (tjb201@cam.ac.uk)
University of Cambridge

Ioannis Markakis (ioannis.markakis@cl.cam.ac.uk)
University of Cambridge

Abstract.
Coinductively invertible cells play a key role in the homotopy theory of strict ω-categories [3],

allowing one to define weak equivalences among them. The definition of coinductively invertible
cell generalises to weak ω-categories, suggesting the existence of a similar homotopy theory for
weak ω-categories. Such cells have been studied by Fujii et al. [2] for Batanin and Leinster’s weak
ω-categories [4]. Using the new description of weak ω-categories and their computads given by Dean
et al. [1], we extend and give alternative proofs of their results. We provide sufficient conditions for a
cell in a weak ω-category X to be invertible, and show that those conditions are also necessary when
X is free on a finite-dimensional computad. We show in particular that coherence cells and composites
of invertible cells are invertible by explicitly constructing an inverse.
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Perfect moment categories, cocartesian comonads
and Joyal duality

C. Berger

Clemens Berger (cberger@math.unice.fr)
Université Côte d’Azur

Abstract.
In [2] moment categories were introduced as small categories equipped with an active/inert fac-

torisation system subject to two simple axioms. The most prominent examples are Segal’s category Γ,
Eilenberg’s category ∆ and Joyal’s categories Θn. In this talk I will discuss perfect moment categories
defined by the additional property that the inclusion of the active subcategory admits a left adjoint
reflection such that the unit of the adjunction is pointwise inert. This notion relates on one side to a
special class of cocartesian comonads, and on the other side to Barwick’s perfect operator categories
[1]. The latter relationship is actually a categorical duality which subsumes as special case Joyal’s
duality [3] between the n-cellular category Θn and the category Dn of combinatorial n-disks.
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Two-dimensional limit theories enhanced

J. Bourke

Nathanael Arkor (nathanael.arkor@gmail.com)
Tallinn University of Technology

John Bourke (bourkej@math.muni.cz)
Masaryk University

Joanna Ko (joanna.ko@mail.muni.cz)
Masaryk University

Abstract.
Limit theories capture (many-sorted) sets with structure, including examples such as monoids, rings

and small categories. Following Kelly [2], we can consider enriched limit theories for any suitable base
of enrichment, so that when we enrich over small categories we obtain a notion of limit 2-theory,
which ought to capture (many-sorted) categories with structure, such as monoidal categories, duoidal
categories and double categories.

However, on a closer analysis, limit 2-theories do not not work as well as one might hope. The
problems most clearly emerge in many-sorted examples of current interest such as monoidal fibrations,
double categories, double fibrations and monoidal double categories where certain structural maps
should be strict (and/or strictly preserved).

In this talk I will explain the problems with limit 2-theories and how they are overcome by passing
to enhanced limit 2-theories, which are enriched limit theories over a different base of enrichment F
[3]. Our main application is a theorem about bimodels in this setting and will explain the various
equivalent descriptions of structures such as monoidal double categories [4] and double fibrations [1]
in the literature.
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2-stacks over bisites

E. Caviglia

Elena Caviglia (ec363@leicester.ac.uk)
University of Leicester

Abstract.
Stacks generalize one dimension higher the fundamental concept of sheaf. They are pseudofunctors

that are able to glue together weakly compatible local data into global data. Stacks are a very
important concept in geometry, due to their ability to take into account automorphisms of objects.
While many classification problems do not have a moduli space as solution because of the presence of
automorphisms, it is often nonetheless possible to construct a moduli stack.

In recent years, the research community has begun generalizing the notion of stack one dimension
higher. Lurie studied a notion of (∞, 1)-stack, that yields a notion of (2, 1)-stack for a trihomomor-
phism that takes values in (2, 1)-categories, when truncated to dimension 3. And Campbell introduced
a notion of 2-stack that involves a trihomomorphism from a one-dimensional category into the tricat-
egory of bicategories.

In this talk, we will introduce a notion of 2-stack that is suitable for a trihomomorphism from a
2-category endowed with a bitopology into the tricategory of bicategories. The notion of bitopology
that we consider is the one introduced by Street in [4] for bicategories. We achieve our definition of
2-stack by generalizing a characterization of stack due to Street [4].

Since our definition of 2-stack is quite abstract, we will also present a useful characterization in
terms of explicit gluing conditions that can be checked more easily in practice. These explicit condi-
tions generalize to one dimension higher the usual stacky gluing conditions. A key idea behind our
characterization is to use the tricategorical Yoneda Lemma to translate the biequivalences required
by the definition of 2-stack into effectiveness conditions of appropriate data of descent. As a biequiv-
alence is equivalently a pseudofunctor which is surjective on equivalence classes of objects, essentially
surjective on morphisms and fully faithful on 2-cells, we obtain effectiveness conditions for data of
descent on objects, morphisms and 2-cells. It would have been hard to give the definition of 2-stack
in these explicit terms from the beginning, as we would not have known the correct coherences to ask
in the various gluing conditions. Our natural implicit definition is instead able to guide us in finding
the right coherence conditions. Our definition of 2-stack and our characterization in terms of explicit
gluing conditions have been developed in [2].

Finally, we will present the motivating example for our notion of 2-stack, which is the one of
quotient 2-stack. In [1], we generalized principal bundles and quotient stacks to the categorical
context of sites. We then aimed at a generalization of our theory one dimension higher, to the context
of bisites, motivated by promising applications of principal 2-bundles to higher gauge theory. But there
was no notion of higher dimensional stack suitable for the produced analogues of quotient prestacks
in the two-categorical context. Our notion of 2-stack is able to fill this gap. Indeed, we have proven
that, if the bisite satisfies some mild conditions, our analogues of quotient stacks one dimension higher
are 2-stacks. Our theory of principal 2-bundles and quotient 2-stacks has been developed in [3].
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Quotient 2-stacks could give a substantial contribution towards the development of a cohomology
theory of schemes, and more in general of stacks, with coefficients in stacks of abelian 2-groups. This
theory would produce new and refined 2-categorical invariants associated to schemes and algebraic
stacks, that could solve numerous open problems in algebraic geometry.
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Crossed modules of algebras over an operad and an
application to rational homotopy theory

C. Chabertier

Clovis Chabertier (chabertier@imj-prg.fr)
Université Paris-Cité

Abstract.
Crossed modules have been studied in various contexts for a long time in algebraic topology,

beginning with the work of Whitehead in [1] to understand pointed homotopy 2 types. Loday in
[2] shows that crossed modules of groups can be understood in many ways : as groups internal to
the category of small categories, as simplicial groups with Moore complex of length 1, as a 1−cat-
groups, or as a categories internal to the category of groups. These last two descriptions allow him
to generalize crossed modules of groups to higher versions, namely n-cat-groups. Morally such an
object is an n-fold category internal to groups, and higher versions of crossed module, say n-crossed
modules can be inductively defined as a crossed module internal to the category of (n − 1)-crossed
modules. The other idea of Loday is that one can associate to an n−crossed module L = H d→ G a
space BL such that the canonical sequence BH → BG → BL is a homotopy fiber sequence. Using
these ideas, he was able to prove that n-crossed modules are models for pointed homotopy (n + 1)-
types. Later on, several authors studied crossed modules in other algebraic contexts. For example
Ellis in [3] studies n-crossed cubes of associative/commutative/Lie/etc.. algebras and proves that
such objects can be equivalently defined as n-fold categories internal to algebras of the associated
type. In the 00’s, Janelidze in [4] gives a general framework in which crossed modules can be defined
: semi-abelian categories, and proves that the category of crossed modules internal to a semi-abelian
category C is equivalent to the category Cat(C) of internal categories to C. One can play the same
game and prove that n-fold crossed modules internal to C are equivalent to n-fold categories internal
to C. Many algebraic categories are known to be semi-abelian : the categories of groups, non-unital
rings, associative or commutative algebras, Lie algebras, etc ... And it seems to be folklore that the
category of algebras over a symmetric algebraic reduced operad is semi-abelian.

However the definitions of Janelidze and Ellis are not so well adapted to the case of algebras over
an operad. First of all, their definitions are a bit involved, Indeed they both required lots of axioms.
For example, a crossed module of associative algebras is the data of a morphism of algebras d : A→ B,
an internal action of B on A such that d is equivariant and satisfies a "Peiffer" condition. When one
wants to go to higher crossed modules, this becomes awful. Second, the homotopical properties, and
especially the link between (higher) crossed modules of algebras and the homotopy theory of algebras
over an operad is not clear at all.

In a current work, Leray-Rivière-Wagemann (LRW) give yet another definition of crossed modules
of algebras over an operad P, namely it is the data of a P-algebra structure on a chain complex
...0 → A

d→ B concentrated in degrees 0 and 1. This has two main advantages over the previous
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definitions. First it is a very concise and clear definition. Second it is clearly linked to the homotopy
theory of P-algebras, that is differential graded P−algebras.

In an upcoming series of two papers, we generalize the definition of LRW to get a very con-
cise definition of crossed n-cube of algebras over an operad, namely it is the data of a P−algebra
structure on an n−fold chain complex A•,...,• concentrated in degrees (ϵ1, ..., ϵn), ϵi ∈ {0, 1}. We
prove that such a structure descends to P−algebra structures on each Aϵ1,...,ϵn , and that we get
a crossed n-cube of algebras in the sense of Ellis. We also prove that our category of crossed n-
cubes of P−algebras is equivalent to the category of n−fold categories internal to the category of
P−algebras, so our definition is equivalent to the ones of Ellis and Janelidze. The main advantage of
our "global" definition as opposed to the previous "locals" ones lies in the existence of the monoidal
functor Tot⊕ : Ch(...Ch(A)) → Ch(A) as soon as A is a monoidal abelian category, for example
A = V ectQ. In particular it induces a functor which sends a crossed n−cube of P-algebras (in our
sense) to a differential graded P-algebra concentrated in degrees 0, ..., n+1, so here the link with the
homotopy theory of P-algebras is almost for free.

The second paper of this series is devoted to an application to rational homotopy theory and
especially to a conjecture of Félix and Tanré in [?]. In this paper they construct a crossed module of
groups C(g) associated to a complete differential graded Lie algebra g concentrated in degrees 0 and
1. They prove that the classifying space BC(g) of this crossed module is isomorphic to the geometric
realization ⟨g⟩ of g in the sense of [6] and conjecture that given a cdgl concentrated in degrees 0, ..., n,
one can associated to it a n-cat-group and that its classifying space is isomorphic to the geometric
realization of this Lie algebra. We studied the case n = 2 and prove that for a Lie algebra in square g,
one can associate Tot(g) a complete dgLie algebra of height 3 and its geometric realization ⟨Tot(g)⟩.
Or one can associate a crossed square of groups and consider its classifying space. We prove that
thoses two constructions are weakly homotopy equivalent.
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Abstract.
Degenerate higher categories are those in which a certain number of the lowest dimensions are

trivial, and these structures provide a good test case for theories of n-category. Via a dimension shift,
a k-degenerate (n+ k)-category can be regarded as an n-category with extra structure, allowing us to
study higher-dimensional structures via lower-dimensional ones that might be better understood.

Thus far the theory of these structures is not very well-developed, but another issue is the paucity
of examples. In this talk we will present a series of examples derived from the fundamental n-groupoids
of 2, the indiscrete space with two points; here n ≤ ∞. This may seem simple-minded (among other
reasons because the space is contractible) but it provides a starting point for several interesting insights
into the issues of degeneracy and commutativity.

One of the main ideas of the topic is that if the lowest k dimensions of a higher category are
trivial we can disregard them, and consider the k-cells to be the 0-cells of a new, lower-dimensional
structure. The k types of composition they had as k-cells become k monoidal structures on the new
lower-dimensional structure, which results in the following slogan:

A k-degenerate (n+ k)-category “is” a k-tuply monoidal n-category.

Another key idea is that the k monoidal structures can be seen to result in certain types of
commutativity, via generalised Eckmann–Hilton arguments. The structures that are expected to arise
are organised into the “periodic table of n-categories” conjectured in [1]. For example, a 2-degenerate 3-
category “is” a 2-tuply monoidal category, which is in turn seen, via a weak Eckmann–Hilton argument,
to be a braided monoidal category.

The general theory of these structures is not very rigorously understood, even in terms of the basic
definitions, let alone how we perform the dimension shift and convert the compositions into monoidal
structures, how the generalised Eckmann–Hilton arguments work, what structures arise from those
arguments, and what “is” really means.

In this talk we work with Trimble’s definition of higher category, in which composition is parametrised
by operad actions. However, we will crucially use the little intervals operad C1 rather than the uni-
versal operad acting on path spaces as originally specified by Trimble. The definition comes with an
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immediate notion of fundamental n-groupoid; here n can also be ∞, by means of the work of [2]. Our
first suite of examples then is the fundamental n-groupoid of 2, for n ≤ ∞. The k-cells are essentially
continuous maps Ik → 2, and as 2 is the subobject classifier of Top we can regard these as subspaces
of k-cubes. (Here I denotes the closed interval [0, 1].) Composition proceeds by “stacking” the cubes
in any of the k possible directions, and reparametrising via the little intervals operad.

We can then restrict our attention to the k-degenerate version, where for all j ≤ k the only
j-cell is the empty subspace of Ij . This produces a (relatively) concrete example of k-degenerate
(n+ k)-categories, and we show how to regard this as a k-tuply monoidal n-category.

Our more specific example of interest comes from restricting our attention further, to study con-
figurations of points in n-space. We construct an n-degenerate (n + 1)-category derived from the
fundamental ∞-groupoid of 2 as follows:

• For j < n there is just one j-cell, the empty subspace of Ij .

• The n-cells are the finite subspaces of In, where all lower-dimensional boundary cells are the
empty subspace; thus these amount to configurations of points in the interior of In.

• The (n+ 1)-cells are braids, realised as subspaces of In+1.

The properties of the little intervals operad C1 enable us to prove that these cells are closed
under composition parametrised by C1. This gives us, for all n ≥ 1, an n-fold monoidal category of
configurations of points in In and braids between them.

This will enable us, in a sequel, to study n-degenerate (n+1)-categories in generality, and, following
our work in [3, 4], exhibit a biequivalence between a suitable 2-category of n-degenerate (n + 1)-
categories and the 2-category of symmetric monoidal categories.
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The smothering model structure on Cat
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Abstract.
The notion of smothering functor introduced by Riehl and Verity ([1]) defines a class of functors

which extends the usual notion of equivalence of categories by relaxing the faithfulness condition.
These functors appear naturally as comparison functors between homotopy categories, for instance
the comparison functor relating the homotopy category of a pullback of quasicategories to the pullback
of the homotopy categories of these quasicategories.

In this work, we consider a slight strengthening of the original definition of smothering functors,
which we refer to as stably smothering, that actually form the trivial fibrations of a right Bousfield
localization of the natural model structure on Cat. Precisely, the generating cofibration are given by
the inclusion ik (for k ≥ 0) of two opposite face of the k-cube in the k-cube as well as ic. Those are
pictured for 0 ≤ k ≤ 2 on the left below. The generating trivial cofibration is j, as on the right below

∅ • • • → •• → • • → •

• • → •
• → •
↓ ↓
• → • • ≃ •

i0 i1 ic

i2

•

• ≃ •

j

The weak equivalences for this model structure are the weakly stably smothering functors. They
can be defined either as the functors which are essentially surjective on objects and lift against all
the generating cofibration, except possibly i0, or equivalently as the functors having the 2-categorical
right lifting property against the generating cofibration. Unlike weakly smothering functors in the
sense of [1], they enjoy the 2-ouf-of-3 property, which is crucial to prove the following:

Theorem 1. There is a cofibrantly generated model structure on Cat with weak equivalences the
weakly stably smothering functors.

In parallel, we introduce an equivalence relation, indiscernibility, on parallel isomorphisms in a
given category C. The starting point is an attempt to quotient out all parallel isomorphisms as to
discard the structure provided by a given isomorphism α : x ≃ y between two objects, and only keep the
mere existence of such an isomorphism between x and y. It turns out that such an identification is not
necessarily compatible with the categorical structure of C. To make this statement precise, we consider
the simplicial object core(C→

• ) in Gpd whose groupoid of n-simplices is that of paths of arrows in C
of length n and isomorphisms between two such paths. Given a relation R on parallel isomorphism,
there is a quotient |core(C→

• )|R whose groupoid of n-simplices has arrows the equivalence class of
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isomorphisms between paths of length n in C (with respect to the pointwise equivalence relation
on isomorphisms between two given paths deduced from R). While this simplicial object need not
satisfy the Segal condition for an arbitrary relation, there exists an equivalence relation R on parallel
isomorphisms which can be characterized as the maximal relation R such as the simplicial object
|core(C→

• )|R yields a category object in Gpd. One can then observe that weakly smothering functors
preserve and reflect indiscernibility and admit the following characterization:

Proposition 2. A functor F : C → D is weakly smothering if and only if it preserves indiscerni-
bility and the induced transformation |core(C→

• )|RC
→ |core(D→

• )|RD
is a pointwise equivalence of

groupoids.

The indiscernibility relation R can be extended to a relation R′ between parallel arrows which is
a congruence with respect to composition of arrows, and the canonical quotient map C → Π(C) is a
smothering functor, where Π(C) is the category with the same object as C and with morphisms the
indiscernibility classes of arrows modulo R′. The weakly smothering functors are equivalently those
inducing an equivalence of categories Π(C)→ Π(D).

The following example, adapted from Proposition 3.3.14 of [2], is archetypical:
Example 3.
Given a pullback squares of quasicategories as on the right with p
an isofibration, the canonical functor

Ho(A×B E)→ Ho(A)×Ho(B) Ho(E)

is a weakly stably smothering functor.

A×B E E

A B
f

p

⌟

This can in fact be account for the following important result, which states that, in the adjunction
between the homotopy category functor Ho and the nerve functor N, the left and right adjoints are
swapped when restricting to the ∞-coreflection of Cat given by the smothering model structure:

Theorem 4. There is a diagram of ∞-adjunctions

Catsmt QCat

Cat

ιs N

Hoτs

N◦ιs

τs◦Ho

⊣ ⊣

⊣

where Catsmt, Cat and QCat are the (∞, 1)-categories presented by the smothering model structure,
the natural model structure on Cat and the Joyal model structure on simplicial sets respectively.
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Differential bundles in Goodwillie calculus

M. Ching

Kaya Arro (kaya.arro@ucr.edu)
University of California, Riverside

Michael Ching (mching@amherst.edu)
Amherst College

Abstract.
In recent work with Kristine Bauer and Matthew Burke [1] we developed the theory of tangent ∞-

categories, the∞-categorical version of Rosický’s [9] and Cockett and Cruttwell’s [3] theory of tangent
categories. This theory allows us to make precise the analogy between Goodwillie’s calculus of functors
in homotopy theory [6] and the ordinary differential calculus of smooth manifolds, by constructing a
tangent ∞-category whose objects are ∞-categories and whose morphisms are functors. The tangent
bundle on an ∞-category C is that constructed by Lurie [7]: the ∞-category TC of parameterized
spectra (in the sense of stable homotopy theory) over objects of C.

Construction of the Goodwillie tangent structure opens the door for extending other ideas from
tangent categories, and hence from smooth manifolds, to the functor calculus setting. In this talk, I
will describe joint work with Kaya Arro in which we establish the analogues of smooth vector bundles.
Cockett and Cruttwell [5] developed a notion of differential bundle in an arbitrary tangent category,
and MacAdam showed in [8] that in the category of smooth manifolds that notion recovers precisely
the smooth vector bundles (of locally constant rank). Our main result identifies a differential bundle in
the Goodwillie tangent structure with a collection of stable ∞-categories and exact functors between
them, parameterized by a base ∞-category.

Our work comprises three parts. First we extend Cockett and Cruttwell’s definition of differential
bundle to the setting of tangent ∞-categories. Then we show how any differential bundle can be
recovered, up to equivalence, from its projection map and zero section by appropriate pullbacks. (This
characterization is inspired by MacAdam’s work but appears to be new, even for ordinary tangent
categories.) Finally, we apply that construction to the Goodwillie tangent structure and establish our
classification of differential bundles (and linear maps between them) in that setting.

Given the prominent role that vector bundles play in the theory of manifolds, we expect differential
bundles to be central to the tangent category perspective on Goodwillie calculus. For example, we
hope our framework will allow for a concrete definition of the cotangent bundle on an ∞-category.
Concepts such as connections, torsion and curvature [4] and Lie algebroids [2] have also been defined
in an arbitrary tangent category, and we expect these notions could now be identified in the world of
∞-categories too.
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Fibered elementary quotient completion
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Abstract.

Completions of categories by quotients have been deeply studied in category theory. The main con-
struction is the free exact completion of a (weakly) left exact category provided in [1, 2]. Later in
[3], Maietti and Rosolini introduced the elementary quotient completion in order to give an abstract
description of the quotient model in [4]. The main novelty is that the authors relativize the notions
of equivalence relation and quotient for Lawvere’s elementary doctrines, which are suitable functors
of the form P : Cop → Pos, from a category C with strict finite products to the category Pos of posets
and order preserving functions. As shown in [3], the elementary quotient completion generalizes the
exact completion of (weakly) left exact categories.

The present work originates from the following observation: the exact completion of a left exact
category C not only adds stable quotients of equivalence relations; it also provides fibered quotients
with respect to the codomain fibration, in the sense that there exists a fibered adjunction Q ⊣ Eq as
in the following diagram

EqRel(C→
ex/lex) C→

ex/lex

Cex/lex

r cod

Eq

Q

⊣

where the left hand fibration is that of equivalence relations on C→
ex/lex, i.e. congruences r1, r2 : z → x

in C→
ex/lex and r(r1, r2) := cod(x), and Eq is the functor sending an object x ∈ C→

ex/lex to the pair
(idx, idx). Pointwisely, the above diagram states that the slices of Cex/lex have quotients of equivalence
relations, which is a consequence of the fact the slices of Cex/lex are also exact.

In this talk, we aim to generalize the above situation and to freely add fibered quotients with respect
to an elementary doctrine P : Cop → Pos for a fibered category p : E → C with the same base
category. To this extent, we assume that p is a comprehension category as in [5] in order to take
into account P-equivalence relations on objects of E given by the subfibration on equivalence relations
r : EqRelE(P)→ C of the fibration of relations obtained through the following change of base situation

RelE
∫
P

C E C
A→Γ.A.A

π(P)
⌟

p

r
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where Γ.A is the common notation for the domain of the comprehension of an element A ∈ E over Γ,
and where π(P) is the Grothendieck construction applied to P.

Starting from a suitable pair of fibrations (π(P), p) where P is an elementary doctrine and p is a
comprehension category, we provide a pair (π(P), p) where P : Cop → Pos is the elementary quotient
completion of P and p is a comprehension category with equality and fibered quotients as defined in
[5], i.e. there exists a fibered adjunction as in the following diagram

EqRelE(P) E

C
r p

Eq

Q

⊣

p is obtained considering suitable pseudo descent objects, in the sense of [6], and the correspondence
(π(P), p) 7→ (π(P), p) has a suitable universal property in 2-categorical terms.

As applications of this work, we provide an abstract method for models of families of sets for the
extensional level of the Minimalist foundation [7], as done in [8] for the Predicative effective topos
introduced in [9].
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The algebraic weak factorisation system
of twisted coreflections and delta lenses

B. Clarke

Bryce Clarke (https://bryceclarke.github.io)
Inria Saclay, France / Tallinn University of Technology, Estonia

Abstract.
The notion of an algebraic weak factorisation system (awfs), introduced by Grandis and Tholen [5],

generalises that of an orthogonal factorisation system (ofs). In the standard definition of an awfs on
a category C, the left and right classes of morphisms are determined by the categories of L-coalgebras
and R-algebras for a suitable comonad-monad pair (L,R) on the arrow category C2. An ofs may
be understood as an awfs in which the comonad and monad are idempotent. Recently, Bourke [2]
demonstrated that an awfs on C can be defined entirely in terms of a pair of double categories L
and R over the double category of commutative squares Sq(C) equipped with a lifting operation that
satisfies two axioms, yielding a characterisation much closer in spirit to that of an ofs.

A leading example of an algebraic weak factorisation system is the awfs on Cat whose L-coalgebras
are the split coreflections (functors equipped with a right-adjoint-left-inverse) and whose R-algebras
are the split opfibrations. Delta lenses are functors equipped with a functorial choice of lifts, directly
generalising the notion of split opfibration [6], and are the focus of ongoing research in applied category
theory. Motivated by this close relationship with split opfibrations, it is natural to ask: is there an
awfs on Cat whose R-algebras are delta lenses?

In this talk, I will introduce the notion of twisted coreflection as a split coreflection with a certain
property, and construct an algebraic weak factorisation system on Cat whose L-coalgebras are the
twisted coreflections and whose R-algebras are the delta lenses.

I will present two separate descriptions of this awfs, highlighting the connections between them.
In the first approach [3], I will define explicitly the comonad L and monad R arising from a functorial
factorisation on Cat, in the sense of Grandis and Tholen [5]. In the second approach [4], I will construct
double categories TwCoref and Lens of twisted coreflections and delta lenses, respectively, and define
suitable lifts of twisted coreflections against delta lenses, in the sense of Bourke [2]. Both methods
make important use the universal properties of bijective-on-objects functors, discrete categories, and
the comprehensive factorisation system on Cat. Moreover, I will show that this awfs is cofibrantly
generated by a small double category, in the sense of Bourke and Garner [1].

In addition to providing a new framework for understanding delta lenses, one of the principal
benefits of this work is illustrating a seemingly rare example of a cofibrantly generated awfs in
which the entire left class, not just the generators, may be fully understood. In particular, I will
show that every twisted coreflection arises as a pushout of an initial functor from a discrete category
along a bijective-on-objects functor. This yields a simple way of constructing examples of twisted
coreflections from indexed collections of categories with a chosen initial object. I will also give an
explicit construction of the cofree twisted coreflection on a functor and on a split coreflection.
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Drazin Inverses in Categories
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Abstract.
A Drazin inverse [1] is a fundamental algebraic gadget which has been extensively deployed in

semigroup theory and ring theory. While they can also be defined for endomorphisms of any category,
Drazin inverses (it seems) have never been extensively developed from a categorical perspective [4].
The purpose of this talk is to introduce Drazin inverses and to present some of their basic results. A
Drazin category is a category in which every endomorphism has a Drazin inverse: examples include
the category of matrices over a field, the category of finite length modules over any ring, and any finite
set enriched category. We shall discuss Drazin inverses in mere categories, in additive categories, and
in dagger categories. We shall explain how Drazin inverses relate to Leinster’s notion of eventual
image duality [2]. Finally we shall introduce a new notion of Drazin inverses for pairs of opposing
maps, and as an application of this kind of Drazin inverse we provide, for dagger categories, a novel
characterization of the Moore-Penrose inverse [3] in terms of the Drazin inverse of the opposing pair
of a map and its adjoint.

References
[1] M. P. Drazin. Pseudo-inverses in associative rings and semigroups. The American mathematical

monthly, 65(7):506?514, 1958.

[2] T. Leinster. The eventual image. arXiv preprint arXiv:2210.00302, 2022.

[3] J.R.B. Cockett and J-S. P. Lemay. Moore-Penrose Dagger Categories. In Proceedings of the Twen-
tieth International Conference on Quantum Physics and Logic, Paris, France, 17-21st July 2023,
volume 384 of Electronic Proceedings in Theoretical Computer Science, pages 171-186. Open Pub-
lishing Association, 2023.

[4] J.R.B. Cockett, J-S. P. Lemay, and P. Varshinee Srinivasn. Drazin Inverses in Categories. arXiv
preprint arXiv:2402.18226, 2024

3 CONTRIBUTED TALKS

10:30 - Tuesday

53 Full Schedule



A higher-dimensional Eckmann–Hilton argument
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Abstract. The Eckmann–Hilton argument plays a subtle and crucial role behind the scenes in
higher-dimensional category theory. It can show us where hidden commutativities arise from cells
with identity boundaries being able to commute past each other, given enough dimensions. The
basic case tells us that doubly-degenerate 2-categories give commutative monoids; more precisely, a
doubly-degenerate 2-category “is” a set with two multiplications on it satisfying interchange, and the
Eckmann–Hilton argument tells us that those multiplications must be the same and commutative [3].

Given more dimensions, more nuance is possible. It is considered well-known that doubly-degenerate
weak 3-categories “are” categories with two weak monoidal structures satisfying weak interchange, and
that a weak Eckmann–Hilton argument shows that this amounts to a braided monoidal category [4].
However, the classic proofs of this do not explicitly provide the generalisation of the Eckmann–Hilton
argument [5].

At the next dimension the situation seems even more folkloric. It seems widely accepted that a
category with three monoidal structures on it (satisfying appropriate interchange) “is” a symmetric
monoidal category, and that this is the largest number of monoidal structures that will fit: adding
further monoidal categories just gives us symmetric monoidal categories again. Often no indication
of how this is achieved is given, only a reference made to Baez and Dolan’s Stabilisation Hypothesis
[2] or an appeal to the work of Joyal and Street [5].

All of this is in some sense well known, but we do not that think this has been precisely written
down. Aguiar and Mahajan [1] give a comprehensive account of the related notion of n-monoidal
category, but this still does not quite fit the particular nuance that we are interested in: that mul-
tiple monoidal structures, inherited from higher compositions and so interacting appropriately under
interchange, will ‘stabilise’ to what is effectively a single symmetric monoidal structure.

In another sense, the work of Joyal and Street [5] claims that identifying those braidings which are
symmetries provides an equivalence of 2-categories between symmetric monoidal categories and cate-
gories with a symmetric multiplication, but the details to establish this equivalence are not described
explicitly.

Often an appeal is made to the Eckmann–Hilton argument in order to fill in missing details, but
often nothing resembling such an argument is provided in full. In this talk we will give the 3-fold
generalisation of the weak Eckmann–Hilton argument in 4 dimensions, that is, for 3-degenerate 4-
categories. This will enable us to not only give a precise sense in which 3-degenerate 4-categories give
rise to symmetric monoidal categories, but also to fill in the details of [5] to provide:

3 CONTRIBUTED TALKS

10:30 - Wednesday

54 Full Schedule



1. a generalisation to n-degenerate (n+ 1)-categories,

2. an algebraically nice 2-category of these, and

3. a proof that this 2-category is biequivalent to the 2-category of symmetric monoidal categories.

This enables us to finally remove the quotation marks around “is” in the statement

An n-degenerate (n+ 1)-category “is” a symmetric monoidal category

to give a satisfying, fully algebraic proof of one part of the stabilisation hypothesis.
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Connections in algebraic geometry via tangent categories

G. Cruttwell

Geoff Cruttwell (gcruttwell@mta.ca)
Mount Allison University, Sackville, Canada

JS Lemay (js.lemay@mq.edu.au)
Macquarie University, Sydney, Australia

Eli Vandenberg (ewvandenberg@mta.ca)
Mount Allison University, Sackville, Canada

Abstract.
In this talk, we’ll use the abstract formalism of tangent categories [1, 5] to compare and contrast

different notions of connections in algebraic geometry. In particular, we’ll show (i) how the definition
of a “connection on a differential bundle in a tangent category” [2], when applied to the tangent
category of affine schemes [3], exactly corresponds to the definition of a connection on a module [4,
pg. 756], and (ii) how the definition of a “connection on a submersion in a tangent category”, when
applied to the tangent category of affine schemes, generalizes connections on a module, and seems to
be a new concept in algebraic geometry.

This talk is based on joint work with JS Lemay and Eli Vandenburg (for i) and Marcello Lanfranchi
(for ii).
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Non-additive derived functors: a chain complex approach

M. Culot

Maxime Culot (maxime.culot@uclouvain.be)
UCLouvain

Fara Renault ()
UCLouvain

Tim Van der Linden (tim.vanderlinden@uclouvain.be)
UCLouvain

Abstract.
Let F : C → E be a functor from a category C to a (Borceux–Bourn [1]) homological or (Janelidze–

Márki–Tholen [6]) semi-abelian category E . We investigate conditions for the homology Hn(X,F )
of an object X in C with coefficients in the functor F defined via projective resolutions in C to be
independent of the chosen resolution. Then the left derived functors of F may be constructed as in
the classical abelian case.

Our strategy is to extend the concept of chain homotopy to a non-additive setting via the technique
of imaginary morphisms. More precisely, we use the approximate subtractions of Bourn–Janelidze [2],
originally considered in the context of subtractive categories [7, 8]. This works as soon as C is a
pointed regular category with finite coproducts and enough projectives which are closed under proto-
split subobjects, a new condition we introduce in [3], and which comes for free in the abelian setting.
We further assume that the functor F satisfies certain exactness conditions: we may ask it to be
protoadditive [4, 5] and preserve binary coproducts and proper morphisms, for instance—conditions
which amount to F being additive when C and E are abelian categories.

In this setting we work out a basic theory of derived functors, compare it with the simplicial
approach, and give some examples.

The main reference of this talk is [3].
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Two developments of "Separability of The Second Kind"

S. Das

Subhajit Das (subhajitdas@iisc.ac.in)
Indian Institute of Science

Abhishek Banerjee (abhi@iisc.ac.in)
Indian Institute of Science

Abstract. The categorical notion of a separable functor was first given by Năstăsescu, Van den Bergh,
and Van Oystaeyen in [12]. A functor F : C −→ D is said to be separable if the natural transformation
on hom-sets induced by F can be split by a natural transformation P . This definition is constructed
so that separable morphisms of rings correspond to the restriction of scalars being separable in the
sense of [12]. Therefore, the study of separable functors is closely tied to that of adjoint pairs. In [13],
Rafael gave conditions in terms of the unit and counit of an adjunction (F,G) for the functors F or
G to be separable. This was further generalized to the notion of separability of the second kind, by
Caenepeel and Militaru [5] : Suppose that we have functors F : C −→ D and I : C −→ X . Then, the
functor F is said to be I-separable if the natural transformation on hom-sets induced by F is split up
to the natural transformation induced by I.

This talk will consist of two parts, both revolving around the notion of separability of the second
kind. The first part is published work with Abhishek Banerjee [2], in which we bring together separa-
bility of the second kind and another notion of separable functors that has appeared in the literature
: Heavily separable functors due to Ardizzoni and Menini [1] i.e., separable functors F such that the
splitting natural transformation P is compatible with compositions in D in a certain manner. We
combine these ideas to consider functors F : C −→ D which are heavily I-separable, where I is a
functor I : C −→ X .

We proceed to give a Rafael-type Theorem appropriate for this "amalgamated" version of separa-
bility. This characterizes heavy separability of the second kind for functors admitting a (left or right)
adjoint. We then present applications of these results in three different contexts. The first application
is in the context of ringoids, which horizontally categorify rings. These results generalize Ardizzoni
and Menini’s results on the ordinary heavy separability of functors associated with ring extensions.

The second application is to monads and comonads and the associated Eilenberg-Moore adjunc-
tions. By fixing a category C and a monad T on C, one can look at the family of T-adjunctions, i.e.,
adjoint pairs (F : C −→ D, G : D −→ C) whose associated monad is T. If I : C −→ X is any functor
and (F,G), (F ′, G′) are T-adjunctions, we show [2, § 4.] that the left adjoint F is heavily I-separable
if and only if so is F ′. This means that for a given monad T, we can ask if the family of T-adjunctions
as a whole, is heavily I-separable. A dual result holds for comonads. These results are motivated
by the work of Mesablishvili [10] with I-separability and families of adjunctions associated to a given
monad or comonad. Now suppose that (L,R) is an adjunction such that the left adjoint L can be
equipped with the structure of a comonad L on C. It is known ([3, § 2.6]) that the right adjoint R
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can be equipped with the structure of a monad R. For any adjoint pair (I ⊣ J) of endofunctors on
C satisfying a commutativity condition [2, Theorem 4.3.], we see that the free L-coalgebra functor
FL taking objects of C to free L-coalgebras is heavily I-separable if and only if the functor FR tak-
ing objects of C to free R-algebras is heavily J-separable. We then combine this with the results of
Ardizzoni and Menini [1] to give two applications.

If time permits, we also see a third application of the Rafael-type Theorem in the context of
entwined modules. This is one of the original contexts studied by Caenepeel and Militaru while
introducing separability of the second kind in [5].

In the second part of the talk, we enrich the notion of separability of the second kind over a
symmetric monoidal closed category V. In particular, using Lawvere’s remarkable idea of viewing
metric spaces as enriched categories, we see that separability of the second kind yields a very simple
geometric condtion when V = (([0,∞],≥),+, 0). We end with two theorems : First, we see an enriched
version of the Rafael-type Theorem appropriate to this context. Second, we see that this notion of
enriched separability is invariant under change of base.
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First-Order Bicategories: a new categorical perspective on
first-order logic

A. Di Giorgio

Filippo Bonchi (filippo.bonchi@gmail.com)
University of Pisa
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University College London

Nathan Haydon (nathan.haydon@taltech.ee)
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Pawel Sobocinski (pawel.sobocinski@taltech.ee)
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University of Pisa

Abstract.

Background Cartesian bicategories (of relations) were introduced in [2] by Carboni and Walters
as a categorical algebra of relations. These are poset-enriched categories such that every object X
is a special Frobenius bimonoid, comonoids are left adjoint to the monoids and every arrow is a lax
comonoid homomorphism.

The archetypical example is the category Rel◦, whose objects are sets, arrows are relations,
composition is the relational product R ,◦ S = {(x, y) | ∃z.(x, z) ∈ R ∧ (z, y) ∈ S}, identities are
id◦X = {(x, y) | x = y} and the order on the arrows is given by inclusion.

A category C is a cocartesian bicategory if Cco, i.e. C with the order reversed, is a cartesian
bicategory. An example is Rel•, the category of sets and relations, whose composition is the relative
sum R ,• S = {(x, y) | ∀z.(x, z) ∈ R ∨ (z, y) ∈ S}, identities are id•X = {(x, y) | x ̸= y} and the order
on the arrows is inclusion.

The axioms of cartesian bicategories are known to be complete for regular logic [6], that is the
∃∧-fragment of first-order logic (FOL). Dually, cocartesian bicategories are complete for coregular
logic, i.e. the ∀∨-fragment of FOL.

In order to account for full first-order (classical) logic, we investigate the interaction of cartesian
and cocartesian bicategories as linear bicategories.
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The latter were introduced in [3] by Cockett, Koslowski and Seely as a horizontal categorification
of linearly distributive categories and roughly consists of two bicategories sharing the same objects
and morphisms but having two diffrent compositions, one linearly distributing over the other.

Rel is an example and, indeed, the following holds for every Q,R, S of the appropriate type:

Q ,◦ (R ,• S) ⊆ (Q ,◦ R) ,• S

Main contributions We introduce the novel notion of first-order bicategories as linear bicategories
where the two bicategory structures are cartesian and cocartesian, moreover:

1. there are linear adjunctions [3] between (co)monoids of the two structures;

2. and these are required to satisfy some linear Frobenius conditions.

In the spirit of functorial semantics, we take the free first-order bicategory FOBT generated by a
theory T and observe that models of T in a first-order bicategory C are morphismsM : FOBT → C.
Taking C = Rel, these are models in the sense of FOL.

By adapting Henkin’s proof of Gödel’s completeness theorem, we prove that the laws of first-order
bicategories provide a complete axiomatisation for first-order logic.

Then, we proceed in showing a correpondence between first-order bicategories and boolean hyper-
doctrines, reusing from [1] an adjunction between cartesian bicategories and elementary and existential
doctrines [5], which are a generalisation of hyperdoctrines, corresponding to regular logic.

Our result reveals an adjunction between the category of first-order bicategories and the category
of boolean hyperdoctrines.

Leveraging another result from [1], we demonstrate that the adjunction becomes an equivalence
when restricted to well-behaved hyperdoctrines (i.e. those whose equality is extentional and satisfying
the rule of unique choice [5]). Finally, combining this finding with a result in [5], we illustrate that
functionally complete [2] first-order bicategories are equivalent to boolean categories [4].
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Axioms for the category of finite-dimensional
Hilbert spaces and linear contractions

M. Di Meglio

Matthew Di Meglio (m.dimeglio@ed.ac.uk)
University of Edinburgh

Abstract.
The category Hilb of Hilbert spaces and bounded linear maps and the category Con of Hilbert

spaces and linear contractions were both recently characterised in terms of simple category-theoretic
structures and properties [2, 3]. For example, the structure of a dagger—an involutive identity-on-
objects contravariant endofunctor—encodes adjoints of linear maps. Remarkably, none of the axioms
refer to analytic notions such as norms, continuity or real numbers.

Counterintuitively, characterising categories with only finite-dimensional Hilbert spaces is more
challenging than those with all Hilbert spaces. The problem is that directed colimits are the natural
categorical way to encode analytic completeness of the scalar field, but the existence of too many of
these colimits also implies the existence of objects corresponding to infinite-dimensional spaces. In
fact, to prove that the scalars are the real or complex numbers without such an infinite-dimensional
object, appeal to Solèr’s theorem [4] is no longer possible, so an entirely new approach is necessary.

This talk will introduce a characterisation, stated below, of the category FCon of finite-dimensional
Hilbert spaces and linear contractions. It will focus on a new approach to proving that the scalars are
the real or complex numbers that does not rely on the existence of infinite-dimensional objects. In
this proof, the supremum of a bounded increasing sequence of positive scalars is explicitly constructed
using the colimit of a directed diagram associated to the sequence. The talk will also briefly touch
on the new notions of bounded sequential diagram and dagger finiteness, which are needed to address
finite dimensionality. It is based on recent joint work with Chris Heunen [1].

Theorem. A locally small dagger rig category (D,⊗, I,⊕, O) is equivalent to FCon if and only if

(1) the object O is terminal (and thus a zero object), the canonical projections

p1 =
(
X ⊕ Y

1⊕ 0−−−→ X ⊕O ∼= X
)

and p2 =
(
X ⊕ Y

0⊕ 1−−−→ O ⊕ Y ∼= Y
)

are jointly monic, and there is a morphism d : I → I ⊕ I such that p1d ̸= 0 ̸= p2d;

(2) the object I is dagger simple and a monoidal separator;

(3) every parallel pair has a dagger equaliser and every dagger monomorphism is a kernel;

(4) for all epimorphisms x : A → X and y : A → Y , we have x†x = y†y if and only if there is an
isomorphism f : X → Y such that y = fx;

(5) every bounded sequential diagram has a colimit; and,

(6) every object is dagger finite.
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Pushforward monads
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University of Edinburgh

Abstract.
If T is a monad on C and G : C → D is right adjoint to F , then GTF is a monad on D, which we

denote G#T. Even when G is not a right adjoint, we can define G#T subject to the existence of a
right Kan extension. This is the pushforward of T along G. This construction was first considered by
Street in [2], where it takes place in a general (strict) 2-category, but has received very little attention
since.

In this talk, I will review its definition, introduce its functoriality properties with respect to G and
T, and state the universal property satisfied by G#T. Pushforwards turn out to be intimately related
to codensity monads: pushing the identity monad forward along G gives the codensity monad of G.
Moreover, any pushforward monad is a codensity monad, whereby G#T is the codensity monad of
GUT, with UT being the forgetful functor from the category of T-algebras.

I will then present examples of the pushforward of three families of monads on the category of
finite sets along the inclusion FinSet ↪→ Set. Each of these turn out to be related to the well-known
codensity monad of this inclusion, which was shown to be the ultrafilter monad by Kennison and
Gildenhuys [1]. Lastly, I will identify the category of algebras of the codensity monad of Field ↪→ Ring
as the free product completion of Field, denoted Prod(Field). Pushing this monad forward along
the forgetful functor Ring→ Set gives the codensity monad of Field→ Set. Its category of algebras
is still Prod(Field), giving the remarkable fact that Prod(Field) is monadic over Set, even though
Field is famously not.
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The homotopy theory of Eilenberg-Zilber opetopic sets

W. Duliński

Wojciech Duliński (w.dulinski@uw.edu.pl)
University of Warsaw

Abstract.
We present the construction of the category of Eilenberg-Zilber presheaves (EZ-presheaves for

short), which is a coherent reflective subcategory of the category of presheaves on a Reedy category
satisfying certain natural axioms (we call such Reedy category a tidy Reedy category).

This construction is motivated by the fact that the category of EZ-presheaves allows the use of
techniques familiar from the theory of simplicial sets, such as induction over skeleta. In general, such
techniques are not directly applicable to all presheaves. In fact, in the case of the category ∆, the
category of EZ-presheaves is equal to the category of all presheaves, the fact which is not true for
many other Reedy categories of interest. Consequently, some key properties of that construction are
described.

Next, we apply our construction to the category pOpeι of positive opetopes with face maps and
ι-contractions, introduced and studied by Zawadowski ([2]). As a preparation, we show that pOpeι
is a tidy Reedy category. A minor modification of Olschok’s theorem ([1]) allows us to endow this
category p̂OpeιEZ of opetopic EZ-presheaves with a model structure in a Cisinski style, which we call
the opetopic (∞, 0)-structure.

Finally, we construct two adjunctions between the categories p̂OpeιEZ and sSet and show that
they are in fact Quillen equivalences (when the category of simplicial sets is considered with the
Kan-Quillen model structure), by studying properties of certain fundamental opetopic sets, called
opetopic associahedra (which are the images of representable simplicial sets in both of the adjunctions
mentioned above).
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Iterating semidirect products in semi-abelian categories

A. Duvieusart

Arnaud Duvieusart (arnaud.duvieusart@uclouvain.be)
UCLouvain

Abstract.
In any semi-abelian category C, the notions of semidirect product, internal action and split epi-

morphisms are equivalent [1]. In particular, this means that every split short exact sequence is, up to
isomorphism, of the form

A A⋊B B.
jA pB

sB

Furthermore, the notion of action of B on A is internal, in the sense that it can be defined as a
morphism B♭A → A such that certain diagrams commute in C. In the categories of groups and Lie
algebras, a notion of n-semidirect products has been introduced by Carrasco and Cegarra [2, 3], which
allows to construct certain iterated semi-direct products using a system of functions Ak × Aj → Ai

for i ≤ j < k satisfying certain identities.
In this talk we will explain how these n-semidirect products can be characterized by diagrams

linking various exact sequences. We will also show how they can be constructed as colimits in C, and
how their structure can be made internal, i.e described by morphisms and commutative diagrams in
C, and how that description can be simplified when C is algebraically coherent [4].

We will also show how iterated semidirect products can be related to iterated internal actions, and
use this relation to explain when the iteration is associative.

References
[1] Borceux, F.; Janelidze, G. ; Kelly, G. Internal object actions. Commentationes Mathematicae

Universitatis Carolinae, 46 (2005), no. 2, 235–255

[2] Carrasco, P. ; Cegarra, A. Group-theoretic algebraic models for homotopy types. Journal Of Pure
And Applied Algebra. 75 (1991), no. 3 , 195–235

[3] Carrasco, P. ; Cegarra, A. A Dold-Kan theorem for simplicial Lie algebras. Theory And Applica-
tions Of Categories, 32 (2017), no. 34, 1165–1212

[4] Cigoli, A.; Gray, J. ; Van der Linden, T. Algebraically coherent categories. Theory And Applications
Of Categories, 30 (2015), no. 54, 1864-1905

3 CONTRIBUTED TALKS

17:00 - Thursday

67 Full Schedule



Galois theory and homology in quasi-abelian functor
categories

N. Egner

Nadja Egner (nadja.egner@uclouvain.be)
Université catholique de Louvain

Abstract.
In this presentation based on [2], I will consider the category A T of functors from a finite category

T to a quasi-abelian category A , and show that, for any replete full subcategory S of T, the full
subcategory F of A T with objects the functors F : T→ A with F (T ) = 0 for all T /∈ S is a reflective
and, moreover, torsion-free subcateogry of A T. This implies that the corresponding Galois structure
is admissible, and I will characterize the (higher) central extensions in A T with respect to F and the
classes of regular epimorphisms in A T and F , respectively. More precisely, for a regular epimorphism
α in A T, the following conditions are equivalent:

1. α is a central extension.

2. The kernel Ker(α) of α lies in F .

3. The T -component αT is an isomorphism for all T /∈ S.

Furthermore, I will give generalized Hopf formulae for homology.
Instances of the pair (A T,F ) are given by (Arr(A ),A ), (Arr2(A ), 2-Arr(A )) and, more generally,

(Arrn(A ), n-Arr(A )) for every n ≥ 1, where n-Arr(A ) denotes the category with objects the chain
complexes in A of length n. Since A is assumed to be quasi-abelian, Arrn(A ) is equivalent to the
category Grpdn(A ) of internal n-fold groupoids in A and n-Arr(A ) is equivalent to the category
n-Grpd(A ) of internal n-groupoids in A .

Let me shortly recall the notions of (higher) central extensions and generalized Hopf formulae for
homology.
Categorical Galois theory

Categorical Galois theory, see e.g. [3], generalizes both classical Galois theory and the theory of
central extensions of groups. A Galois structure Γ consists of an adjunction

C F⊥
F

U

with unit η, and classes E and Z of morphisms in C and F , respectively, that satisfy certain
conditions. For any object B in C , this induces an adjunction

E (B) Z (F(B)),
FB

UB

⊣
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where E (B), also denoted by Ext(B), is the full subcategory of the slice category C ↓ B with objects
the morphisms in E with codomain B. These are called the extensions of B. Categorical Galois
theory is concerned with the study of the full subcategory CExt(B) of Ext(B) with objects the
central extensions of B. This notion is defined in two steps:

• An extension f : A→ B is called trivial if it lies in the essential image of UB .

• It is called central if it is ’locally’ trivial, i.e., there exists a monadic extension p : E → B such
that the pullback p∗(f) of f along p is a trivial extension.

If the Galois structure Γ is admissible, the fundamental theorem of categorical Galois theory asserts
that, for any monadic extension p : E → B, there is a characterization of the extensions of B, whose
pullback along p is a trivial extension, in terms of internal actions of the Galois pregroupoid Gal(E, p).

The central extensions with respect to the Galois structure ΓAb given by the adjunction

Grp Ab,⊥
Ab

I

where Ab and I are the abelianization and inclusion functors, respectively, and E and Z are the
classes of surjective group homomorphisms in Grp and Ab, respectively, recover exactly the classical
central extension of groups.
Generalized Hopf formulae for homology

In certain cases, see e.g. [1], the full subcategory CExt(C ) of central extensions in C of Ext(C )
induces itself a Galois structure Γ1 with adjunction

Ext(C ) CExt(C )⊥
F1

U1

with unit η1, and with E 1 and Z 1 the classes of double extensions defined relatively to E and Z ,
respectively. It turns out that the functor [−]1 : Ext(C )→ Ext(C ) given on objects by [f ] := Ker(η1f ),
factors through C , i.e., there exists a functor [−]1 : Ext(C )→ C such that [−]1 = ι1 ◦ [−]1, where ι1

maps an object B to the extension B → 0.
If p : P → B is a E -projective presentation of B, the second Hopf formula for homology of B with

respect to F is defined as

H2(B,F ) := [P ]∩Ker(p)
[p]1

,

where [P ] := Ker(ηP ). More generally, the (n + 1)-st Hopf formula for homology Hn+1(B,F ) is
defined using the notions of n-fold central extensions and n-fold E -projective presentations.

The generalized Hopf formulae with respect to the Galois structure ΓAb recover exactly the integral
homology groups.
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Gray multicategories and left and right
Gray skew-multicategories

B. Femić

Bojana Femić (femicenelsur@gmail.com)
Mathematical Institute of Serbian Academy of Sciences and Arts

Abstract.
Let On be the category (n-Cat)-Cat of categories enriched in n-categories, or Cat(n-Cat), the

category of categories internal in n-categories, with n ≥ 1. We introduce Gray multicategory and
left and right Gray skew-multicategory of On. They all differ by type (∗, •) which depends on the
nature ∗ of functors and • of transformations used in their construction. We show (in law dimensions)
that left Gray skew-multicategories of certain •1-type are left closed and left representable, whereas
right Gray skew-multicategories of other •2-type are right closed and right representable. For Gray
multicategories we show that: 1) those of strict ∗-type are representable, and 2) that those of certain
•1-type are left closed, and those of other •2-type are right closed, both for any ∗-type, and that they
are related by duality. Using the results of Hermida on the equivalence of representable multicategories
and monoidal categories, and of Bourke-Lack that left representable skew-multicategories yield skew-
monoidal categories, we obtain non-Cartesian monoidal and skew-monoidal (closed) categories of
internal and enriched categories depending on the type. Our construction generalizes results of Gray
and Böhm of closedness and Gray-monoidality for the categories of 2-categories and double categories
(in the sense of dimension and type, respectively), and recent results of Bourke-Lobbia for Gray-
categories (in the sense of type). The approach we use relies on the tools developed in [4] and [5].

This is a work in progress, the results are expected not to depend on dimension n.
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[4] B. Femić: Bifunctor Theorem and strictification tensor product for double categories with lax double
functors, Theory Appl. Categ. 39 (2023), no. 29, 824–873.
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Universal central extensions of braided crossed modules of
groups

A. Fernández Fariña

José Manuel Casas (jmcasas@uvigo.es)
Universidade de Vigo & CITMAga

Alejandro Fernández Fariña (alejandrofernandez.farina@usc.es)
Universidade de Santiago de Compostela

Manuel Ladra (manuel.ladra@usc.es)
Universidade de Santiago de Compostela & CITMAga

Abstract.
The concept of central extension of groups is highly relevant in mathematics, for instance, in the

interpretation of the third cohomology, and it plays a fundamental role in several areas of physics as
well in the quantization of symmetries.

Crossed modules of groups are algebraic objects equivalent to strict 2-groups, or equivalently
categorical groups. Since crossed modules of groups are a generalization of groups, it is natural to
search extensions of classical results in the theory of groups in the category of crossed modules of
groups, both examples of semi-abelian categories [3].

Joyal and Street defined in [4] the concept of braiding for monoidal categories as a natural isomor-
phism τX,Y : X ⊗Y −→ Y ⊗X, generalizing the idea of the usual tensor product of vector spaces. The
notion of braiding for categorical groups provides an equivalent category to the category of braided
crossed modules of groups (see [2, 4]).

In this talk, we will devise a braided version of the results given by Norrie in [5] for braided crossed
modules of groups in the framework of a semi-abelian category (see[1]); more precisely, we will study
universal central extensions in the category of braided crossed modules.

For that purpose, we will construct the universal central extension of a braided crossed module in
the category of braided crossed modules. Then, we will also give a canonical braiding on the universal
central extension of a crossed module with a given braiding in the category of crossed modules. To
finish, we will show the relationship between the two constructions.
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An Algebraic Combinatorial Approach to
the Abstract Syntax of Opetopic Structures

M. Fiore

Marcelo Fiore (marcelo.fiore@cl.cam.ac.uk)
University of Cambridge

Abstract.
The starting point of the talk will be the identification of structure common to tree-like combi-

natorial objects, exemplifying the situation with abstract syntax trees (as used in formal languages)
and with opetopes (as used in higher-dimensional algebra). The emerging mathematical structure will
be then formalised in a categorical setting, unifying the algebraic aspects of the theory of abstract
syntax [2, 3] and the theory of opetopes [6]. This realization allows one to transport viewpoints be-
tween the two mathematical theories and I will explore it here in the direction of higher-dimensional
algebra, giving an algebraic combinatorial framework for a generalisation of the slice construction [1]
for generating opetopes. The technical work will involve setting up a microcosm principle for near-
semirings [5] and exploiting it in the bicategory of generalised species of structures [4], the cartesian
closed structure of which plays a fundamental role.
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Monoidal Meta-Theorem

D. Forsman

David Forsman (david.forsman@uclouvain.be)
Université catholique de Louvain

Abstract.
Certain families of theories of multi-sorted universal algebra can be modeled in monoidal, symmet-

ric monoidal, and cartesian monoidal categories, respectively. For each of these families of theories,
we produce a sound deduction system ⊢. We show that these deduction systems are complete with
respect to the cartesian monoidal category of sets. This yields a meta-theorem:

Let C be a (cartesian/symmetric) monoidal category and let E ∪ {ϕ} be a (cartesian/symmetric)
monoidal theory of universal algebra. Then

E |= ϕ in Set implies that E |= ϕ in C.

The Monoidal Meta-Theorem makes a modest connection between the algebraic structures in Set to
monoidally enriched algebraic structures. As a corollary, we attain that the Eckmann-Hilton argument
generalizes to the setting of symmetric monoidal categories.

The meta-theorem for cartesian monoidal categories is essentially known and proven in [1].
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Conditional flatness and fiberwise localizations in
semi-abelian categories

M. Gran

Marino Gran (marino.gran@uclouvain.be)
Université catholique de Louvain

Abstract. In [1] we extended the group-theoretic notion of conditional flatness for a localization
functor to any pointed category, and we investigated it in the context of homological and semi-abelian
categories. This context includes several examples of importance in algebra, such as groups, loops,
Lie algebras, crossed modules, C*-algebras, etc. In the presence of functorial fiberwise localization,
many results analogous to those obtained in the category of groups [2] hold in any semi-abelian
category, and we provide some existence theorems for certain localization functors in some specific
categories, such as groups, compact groups and cocommutative Hopf algebras. Among reflective
subcategories, the so-called Birkhoff subcategories are the ones that are also closed in the larger
category under subobjects and quotients. We prove that any Birkhoff subcategory of a semi-abelian
category provides a conditionally flat localization, and explain how the property of conditional flatness
of a functor actually corresponds to the property of admissibility of an adjunction from the point of
view of categorical Galois theory [3].

We then present a new example of Birkhoff subcategory [4]. When C is a regular Mal’tsev category,
hence in particular if C is semi-abelian, the category 2-Grpd(C) of internal 2-groupoids in C can be
shown to be a Birkhoff subcategory of the category Grpd2(C) of double groupoids in C, and a simple
description of the reflector can be given. Under some natural conditions on a semi-abelian category C
first considered in [5], the semi-abelian category 2-Grpd(C) turns out to be also action representable
in the sense of [6].

These results have been obtained in collaboration with Jérôme Scherer [1] and Nadja Egner [4].

References
[1] M. Gran, J. Scherer, Conditional flatness, fiberwise localizations, and admissible reflections, J.

Australian Math. Society. 116 (2024) 200-220.

[2] E.D. Farjoun, J. Scherer, Conditionally flat functors on spaces and groups, Collectanea Mathe-
matica 66 (2015) 149-160.

[3] G. Janelidze, Pure Galois Theory in Categories, J. Algebra 132 (1990) 270-286.

[4] N. Egner and M. Gran, Double groupoids and 2-groupoids in a regular Mal’tsev category, preprint
(in preparation).

3 CONTRIBUTED TALKS

10:30 - Monday

76 Full Schedule



[5] M. Gran and J. R. Gray, Action representability of the category of internal groupoids, Theory Appl.
Categories 37 (2021) 1-13.

[6] F. Borceux, G. Janelidze, and G. M. Kelly, Internal object actions, Comment. Math. Univ. Car-
olin. 46 (2005) 235-255.

3 CONTRIBUTED TALKS

10:30 - Monday

77 Full Schedule



From Kripke models to neighborhood models in category
theory

N. Guallart

Nino Guallart (nguallart@us.es)
Universidad de Sevilla

Abstract.
There is a well-known one-to-one correspondence between Kripke models and augmented neigh-

bourhood models, where an augmented model is a monotonic neighbourhood model which contains
its core (

⋂
N(w) ∈ N(w) for all w), (see [4], original proof in [1]). Axiom K is valid in Kripke

models, but not in neighborhood models in general. If we consider the two categories KM and
NM, we can set an injective functor f : KM → NM that sends every Kripke model to a modally
equivalent (augmented) neighbourhood model; alternatively, KM is isomorphic to the subcategory of
augmented neighbourhood models, in which axiom K is valid. If we consider the quotient categories
of bisimilar Kripke models KM\bisim and neighbourhood models NM\bisim, we can establish an
analogue functor f ′ between them preserving modal equivalence. Considering the injective functors
ik : KM→ KM\bisim and in : NM→ NM\bisim, we have that in ◦ f = f ′ ◦ ik. This can also be
studied among specific kinds of models (reflexive, transitive, and so on).

Coalgebras over the category Set allow us to abstract transition structures like Kripke and neigh-
bourhood frames and models, and also other structures such as labelled transition systems and deter-
ministic automata (see [3], [5]). Thus, the aforementioned relationship among Kripke and neighbor-
hood models can be studied in a more general perspective. Coalgebras offer an abstract framework that
can be applied to generalise well-known notions from Kripke frames and models such as bisimilarity
or image-finiteness for broader families of neighbourhood models and frames [2].
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Pasting diagrams beyond acyclicity

A. Hadzihasanovic

Amar Hadzihasanovic (amar.hadzihasanovic@taltech.ee)
Tallinn University of Technology

Abstract.
Most formalisms for n-categorical diagrams [1, 2, 4, 3] include some form of acyclicity condition

on the shapes of diagrams. These conditions may be as strong as requiring the “flow” between cells
across all dimensions to be acyclic, or as weak as only forbidding direct cycles when pasting along a
single dimension. In either case, they forbid very simple non-pasting shapes already in dimension 1,
and commonly occurring pasting shapes starting from dimension 3, such as

• • ,

• •
• • • •
• •

.

Moreover, acyclic shapes tend to not be stable under various useful constructions: typically, the
stronger conditions are not stable under arbitrary duals, and the weaker conditions are not stable
under pasting or under Gray products. A much better-behaved condition on shapes of diagrams
is regularity : roughly, the requirement that all boundaries of all cells occurring in the diagram be,
topologically, closed balls of the appropriate dimension.

The reason for the focus on acyclicity across all these sources is the insistence that the cells of
the “presented ω-category” be subsets of cells of the diagram shape. In this talk, I will show that
the problem disappears if one takes a functorial perspective, focussing on more general morphisms
of diagram shapes. In particular, we can put ourselves in a convenient category RDCpx↓ of regular
directed complexes, which are poset-like structures encoding diagram shapes satisfying the regularity
condition. Among the regular directed complexes, there is a class of objects, the molecules, which are
shapes of pasting diagrams and satisfy a pasting theorem. Morphisms of RDCpx↓ can be interpreted
as “cellular” functors which are allowed to decrease the dimension of a cell; we let RDCpx= be the
wide subcategory whose morphisms are dimension-preserving.

The main result then states: If P is a regular directed complex, the set Mol/P of isomorphism
classes of objects [f : U → P ] in the slice category RDCpx=/P where U is a molecule admits a natural
structure of strict ω-category. Moreover, this ω-category has a minimal generating set whose cells are
in bijection with the elements of P .

If, in addition, P satisfies a technical condition called having frame-acyclic molecules, then Mol/P
is a polygraph (or computad). This is a much weaker acyclicity condition which, in particular, is
always satisfied in dimension ≤ 3. Since regular directed complexes are closed under all sorts of useful
operations, such as gluings (pushouts of monomorphisms), all duals, Gray products, suspensions, and
joins, they provide a more convenient framework for n-categorical diagrams.

The content of this talk is based on parts of the upcoming monograph [5].
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A relative comonad associated to the category of partial
comodules

W. Hautekiet
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Abstract. Partial comodules over a Hopf algebra can be seen as a generalization of usual comodules:
the coaction should no longer be coassociative, but only partially coassociative. This setting is dual
to the one of partial modules over a Hopf algebra, which were introduced in [2] and generalize partial
actions of groups to Hopf algebras.

The category of partial comodules does not satisfy the so-called fundamental theorem of comodules:
a partial comodule is not guaranteed to be equal to the sum of its finite-dimensional subcomodules.
Furthermore, in general there does not even exist a coalgebra whose category of comodules is equivalent
to the category of partial comodules. This is in contrast to the dual theory of partial modules; it is
known that the category of partial modules over a Hopf algebra is equivalent to the category of
modules over a suitably constructed algebra which moreover has the structure of a Hopf algebroid.
However, partial comodules are comonadic over vector spaces, as was shown in [3].

In order to better study the structure of this comonad (e. g., could it be lifted to a Hopf monad
on some monoidal category?), it is useful to look at an associated relative comonad. The notion of
relative comonad is dual to relative monads as introduced in [1]. In our case, the comonad is relative
to the inclusion functor of vector spaces into complete topological vector spaces, and it induces a
comonad on this last category.
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Virtual double categories as coloured box operads

L. Hermans

Lander Hermans (lander.hermans@uantwerpen.be)
University of Antwerp

Abstract.
Virtual double categories, also considered by Leinster as fc-multicategories [1], are a 2-categorification

of multicategories and compare to double categories as multicategories compare to monoidal categories
[2]. In algebraic topology, multicategories are also known as coloured operads and are extensively used
to encode algebraic operations, thus generalizing operads.

In this talk we will generalize operads to box operads [3], fitting the following scheme:

operads

box operads double categories

monoidal categories

virtual double categories = coloured box operads

multicategories = coloured operads

In particular, box operads correspond to virtual double categories with a single object, a single hori-
zontal arrow and a single generating vertical arrow. We apply box operads to algebraic geometry and
topology, as we now will explain.

We use a linear box operad Lax to encode lax functors over a small category taking values in
linear categories. This is motivated by algebraic geometry where lax functors appear as prestacks
generalizing structure sheaves and (noncommutative) deformations thereof.

Our main results are the following:

1. The first operadic approach to an L∞-structure on the Gerstenhaber-Schack complex of a general
prestack was given in [4]. Using box operads, in [3], we give explicit formulas in terms of stackings
of rectangles (“boxes”).

2. Making use of a newly developed Koszul duality for box operads which deals with non-quadratic
relations, in [5], we establish a minimal (in particular cofibrant) model Lax∞ of Lax, shedding a
new light on a question from Markl [6].

In this talk, we will mainly focus on sketching key components from (1) and (2) by harnessing a calculus
of rectangles underlying box operads. In particular, we will present the following three results.

Box operads can be encoded as algebras over the symmetric coloured operad □p (pronounced
“boxop”). □p consists of stackings of boxes which compose operadically by substituting a box in a
stacking by a stacking of boxes. The following drawing provides an example of a stacking
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□p generalizes the well-known symmetric coloured operad Op encoding operads, which is defined using
trees [7].

On the other hand, box operads can equivalently be encoded as monoids in a category with a
skew monoidal product □ , called the “box composite". We will introduce the box composite using
two-level stackings, for example

Interestingly, skew monoidal categories recently also appeared in various other contexts, such as
operadic categories [8].

Thirdly, to each box operad we are able to associate higher algebraic operations Ln constituting
a L∞-algebra. A crucial role is played by thin boxes: boxes whose vertical sides are degenerate. The
operations Ln are obtained by summing over thin-quadratic stackings, i.e. stackings that are quadratic
(in an appropriate sense) with respect to the thin boxes they contain. A thin-quadratic stacking that
is not strictly quadratic is for example

Remark the bottom box is thin. This result generalizes the classical result for operads: quadratic
trees induce a preLie-structure often called the Gerstenhaber brace.

Finally, I will explain briefly how these three ingredients play a key role in Koszul duality for box
operads. If time permits, we will delve deeper by unpacking the (co)bar functor, twisting morphisms,
the twisted complex and the application of Koszul duality to the box operad Lax.

Extending the above results to the coloured setting is an interesting topic for future research
motivated by coloured versions of Lax. Part of this work is joint with Wendy Lowen and Hoang Dinh
Van.
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On predicate liftings and lax extensions of functors

D. Hofmann

Dirk Hofmann (dirk@ua.pt)
University of Aveiro

Abstract.
Lax extensions of Set-functors to bicategories of (enriched) relations are a well-established tool

in various parts of mathematics: they are fundamental in our work on “monoidal topology” [4], but
also generic notions of bisimulation for coalgebras rely on lax extensions [5, 6]. Furthermore, by
providing the semantical framework to interpret modal operators, predicate liftings are at the heart
of the standard approach to coalgebraic modal logic [1].

One of the principal motivation for our work is the paper [6] where, among others, it is shown that

• for a normal (= identity preserving) lax extension L of a functor F : Set → Set, L-bisimilarity
captures precisely behavioural equivalence of F -coalgebras,

• the double-powerset functor does not have a lax extension L so that “L-bisimilarity captures
behavioural equivalence”, therefore the double-powerset functor does not have a normal lax
extension,

• a finitary functor F : Set→ Set has a normal lax extension if and only if F has a separating set
of monotone predicate liftings.

Having these results as starting point, in this talk we will

• give necessary and sufficient conditions, in terms of (weak) preservation of certain pullbacks, for
a Set-functor to admit a normal lax extension to Rel, as well as a largest normal lax extension,

• discuss uniqueness of normal lax extensions to Rel,

• provide a point-free perspective on the connection between lax extensions and predicate liftings
in the context of quantale-enriched relations. In particular, we introduce a notion of predicate
lifting for a lax extension which leads to a simple description of Moss lifting that goes beyond the
realm of accessible functors and is independent of functor presentations (which feature centrally
in previous approaches), and we show that every quantale-valued lax extension of an arbitrary
Set-functor is induced by its class of Moss liftings [2]. We note here that this result explains the
importance of the canonical extensions of generalized monotone neighborhood functors in the
process of constructing quantale-valued lax extensions (in analogy to the two-valued case [6]); it
is a stepping stone to connecting the coalgebraic approaches to behavioural distance via quantale-
valued lax extensions and via liftings to categories of quantale-enriched categories, respectively
[3].

This talk is based on joint work with Pedro Nora (University of Nijmegen), Sergey Goncharov,
Lutz Schröder and Paul Wild (Friedrich-Alexander-Universität Erlangen-Nürnberg).
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Quotient toposes of discrete dynamical systems

R. Hora

Ryuya Hora (hora@ms.u-tokyo.ac.jp)
University of Tokyo

Yuhi Kamio (emirp13@g.ecc.u-tokyo.ac.jp)
University of Tokyo

Abstract.
Lawvere’s open problem on quotient toposes [1] has been solved for boolean Grothendieck toposes

but not for non-boolean toposes. As a simple and non-trivial example of a non-boolean topos, we
provide a complete classification of the quotient toposes of the topos of discrete dynamical systems.
In this context, a discrete dynamical system means a pair (X, f) of a set X and an endofunction
f : X → X.

More concretely, our main theorem classifies the full subcategories of the topos PSh(N) that are
closed under finite limits and small colimits. There are numerous such full subcategories, including
those for which:

• Every state is in a loop.
∀x ∈ X, ∃n > 0, fn(x) = x.

• Every state is eventually fixed.

∀x ∈ X, ∃n > 0, fn+1(x) = fn(x).

• f is bijective.

• Every state enters a loop within two steps, where the period of the loop has no square factors.

∀x ∈ X, ∃n > 0, (fn+2(x) = f2(x)) ∧ (∀p : prime p2 ∤ n)

The goal of this talk is to describe these classes uniformly and clarify the background mathematical
structures.

Our result is deeply related to monoid epimorphisms. Utilizing the theory of lax epimorphisms in
the 2-category Cat, we will explain how (non-surjective) monoid epimorphisms from N correspond to
(non-periodic) behaviors in discrete dynamical systems.

This talk is based on the joint work with Yuhi Kamio [2].
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The Elementary Theory of the 2-Category of Small Categories

C. Hughes

Calum Hughes (calum.hughes@manchester.ac.uk)
The University of Manchester

Adrian Miranda (adrian.miranda@manchester.ac.uk)
The University of Manchester

Abstract.
Lawvere’s Elementary Theory of the Category of Sets (ETCS) [3] posits that the category Set

is a well-pointed elementary topos with natural numbers object satisfying the axiom of choice. This
provides a category theoretic foundation for mathematics which axiomatises the properties of function
composition in contrast to Zermelo-Fraenkel set theory with the axiom of choice (ZFC), which ax-
iomatises sets and their membership relation. Furthermore, ETCS augmented with the axiom schema
of replacement can be shown to be equiconsistent with ZFC.

In this talk, I will present a categorification of ETCS which axiomatises the 2-category of small
categories, functors and natural transformations; this is the elementary theory of the 2-category of small
categories (ET2CSC) of the title. This extends Bourke’s [1] characterisation of categories internal to
a category E with pullbacks to the setting where E satisfies the extra properties of ETCS. Important
2-categorical definitions I will introduce are 2-well-pointedness, the full subobject classifier and the
categorified axiom of choice. The main conclusion is that ET2CSC is ‘Morita biequivalent’ with ETCS,
meaning that the two theories have biequivalent 2-categories of models. The proof of this uses various
adjunctions between E and Cat(E) in order to transfer properties from one to the other.

I will also describe how Shulman and Weber’s ideas on discrete opfibration classifiers can be used
to incorporate replacement, in a way reminiscent of algebraic set theory.

This talk is based on joint work with Adrian Miranda [2].
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Automata in W-Toposes, and General Myhill-Nerode
Theorems

V. Iwaniack

Victor Iwaniack (victor.iwaniack@unice.fr)
Université Côte d’Azur

Abstract.
We extend the functorial approach to automata by Colcombet and Petrişan [1] from the category of

sets to any W-topos and establish general Myhill-Nerode theorems in our setting, including an explicit
relationship between the syntactic monoid and the transition monoid of the minimal automaton. As a
special case we recover the result of Bojańczyk, Klin and Lasota [2] for orbit-finite nominal automata
by considering automata in the Myhill-Schanuel topos of nominal sets.

This project has been partially funded by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program (grant agreement No.670624).

At the moment of the submission of this abstract (March 20), an article was conditionally accepted
for CMCS 2024. A preprint can be found at Iwaniack [3].
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An Enriched Small Object Argument Over a Cofibrantly
Generated Base

J. Jurka

Jan Jurka (jurka@math.muni.cz)
Masaryk University

Abstract.
The small object argument is a transfinite construction of weak factorization systems developed

by Quillen [1], originally motivated by homotopy theory. Since then, various variations ([2, 1.37], [3],
[4, 13.2.1]) of the small object argument became an important tool in category theory itself and also
in other fields of mathematics such as model theory due to the connection between the argument and
ubiquitous notions of injectivity and orthogonality.

In the talk I will tell you about an enriched variant of the small object argument that subsumes
the classical 1-categorical small object argument for weak factorization systems, the 1-categorical
small object argument for orthogonal factorization systems, and certain variants of the small object
argument for 2-categories, (2,1)-categories, dg-categories and simplicially enriched categories.

Along the way, we will introduce a variation of the Day convolution in which we use copowers
instead of the monoidal product. In more detail: Given a cosmos V and a V-category K, we introduce
an analogue F ∗X : A → K of the Day convolution for V-functors F : A → V, X : A → K, in which
we use copowers in K instead of the monoidal product in V. This then makes the underlying category
[A,K]0 of the V-category [A,K] of V-functors A → K a copowered [A,V]-category. These copowers
play a central role in our variant of the small object argument.

The talk will be based on the preprint [5].
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Formalizing accessibility and duality in a virtual equipment

Y. Kawase

Yuto Kawase (ykawase@kurims.kyoto-u.ac.jp)
Research Institute for Mathematical Sciences, Kyoto University

Keisuke Hoshino (hoshinok@kurims.kyoto-u.ac.jp)
Research Institute for Mathematical Sciences, Kyoto University

Abstract. Gabriel–Ulmer duality is a duality between logical theories and categories of their models.
The categories of models are called locally presentable categories and are known to be characterized
as ind-completions of theories. Accessible categories are a generalization of locally presentable cate-
gories and are also characterized as ind-completions. In the accessible context, there are many known
“Gabriel–Ulmer-like” dualities, for example, Makkai–Paré duality [4], Adamek–Lawvere–Rosický dual-
ity [1], and so on. Even in the enriched accessible context, there are many kinds of duality [5]. Then,
an axiomatic approach to these dualities is suggested by [3]. That approach works in a 2-category
and characterizes ind-completions, which are the core concept of dualities, as a KZ-monad.

In this talk, we will give another axiomatic approach to accessibility and duality in a double-
categorical setting. More precisely, inspired by [2], we will work in an (augmented) virtual equipment
rather than a 2-category. We characterize an ind-completion as a vertical morphism having a “Yoneda-
like” universal property, which we call an ind-morphism. Then, we will show that the ind-morphisms
form a double-categorical counterpart of relative (bi)adjunctions and that it yields a duality theorem.
This talk is based on joint work with Keisuke Hoshino.
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On eigen-ring construction for monads

M. Kim

Minkyu Kim (kimminq@kias.re.kr)
Korea Institute for Advanced Study

Abstract.
For a ring A and its left ideal J , the eigen-ring [1] is defined by the quotient of the idealizer by

J where the idealizer is the maximal subring of A which contains J as a two-sided ideal. Let k be
a commutative unital ring. In this talk, we give a generalization of this concept by replacing rings
with monads in the bicategory Bk whose objects are sets, morphisms are bi-indexed k-modules and
2-morphisms are intertwiners. This provides a uniform framework to understand some representations
of categories which we explain below. As a fundamental result, for a monad T, a left ideal J ⊂ T and
its eigen-ring ET(J), we give an adjunction between the category of T-modules and the category of
ET(J)-modules. This adjunction is a generalization of the Morita equivalence between k-modules and
modules over the matrix algebra.

Monads in Bk are equivalent with k-linear categories. Let AC be the monad corresponding to the
k-linearization kC of a category C. The purpose of this talk is to give specific left ideals which encode
some properties of AC-modules: to be precise, the category of J-generated AC-modules, which should
be explained in this talk, is equivalent to the category of AC-modules subject to that property. For
example, if C is the opposite category gro of finitely generated free groups, then the properties such
as analyticity, polynomiality [3, 4, 6], outer property [5] and primitivity [2] correspond to certain
left ideals Iν , Id+1, Iout, Ipr respectively. As one of our main results, the table below computes their
eigen-rings where Pd is the monad related with augmentation ideals; DLie is the monad associated
with Lie operad; H0 is the monad induced by the 0-th group homology of free groups. Moreover, the
application of the above adjunction to each case leads to well-known adjunctions in the literature.
In particular, the case of primitivity reproduces the universal enveloping algebra construction (more
generally, Powell’s construction [6]). This work is now in progress.

Monad T Property Left ideal J Eigen-monad ET(J)
Agro polynomial with degree ≤ d Id+1 P0/Pd+1

analytic Iν EAC (I
ν
C)

primitive Ipr DLie

outer Iout H0
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Limits in Enhanced Simplical Categories

J. Ko

Joanna Ko (joanna.ko.maths@gmail.com)
Masarykova Univerzita

Abstract.
In [3], Riehl and Verity have developed the theory of ∞-cosmoi, which are quasi-categorically

enriched categories that satisfy certain nice properties resembling enriched categories of fibrant ob-
jects. The theory of ∞-cosmoi provides a setting for understanding models for (∞, 1)-categories with
structures, and the pseudo morphisms between them. For instance, we have the ∞-cosmos of (∞, 1)-
categories admitting limits of shape J for a simplicial set J and the functors which preserve limits,
and also the ∞-cosmos of Cartesian fibrations between (∞, 1)-categories and the Cartesian functors.

Riehl and Verity have established in [3] that∞-cosmoi admit all flexible weighted limits, which are
simplicially enriched limits that are analogous to PIE limits in 2-category theory. Examples include
products, inserters, and comma objects.

Besides, in [1], Lack has shown that the existence of 2-dimensional limits involving lax morphisms
is subtle. For instance, in the 2-category of categories with limits of shape J and the functors that do
not necessarily preserve limits, comma objects exist only when one of the 1-morphisms in the diagram
preserves limits.

This phenomenon led Lack and Shulman to introduce enhanced 2-category theory in [2]. An
enhanced 2-category is a 2-category with two types of 1-morphisms: the tight ones and the loose ones,
in which every tight 1-morphism is also loose. For example, categories admitting J-shaped limits
form an enhanced 2-category, with the tight 1-morphisms given by the functors that preserve limits,
whereas the loose 1-morphisms given by just the functors, and the 2-morphisms given by the natural
transformations. As enhanced 2-categories can be seen as enriched categories, Lack and Shulman have
studied the subtle phenomenon of the existence of 2-dimensional limits involving lax morphisms via
enriched category theory.

Taking inspiration from the work [2] by Lack and Shulman, we introduce the notion of enhanced
simplicial categories, which are basically simplicial categories with two types of 0-arrows. Similarly,
an enhanced simplicial category can be seen as an enriched category, hence we apply enriched category
theory to study limits for lax morphisms in the ∞-categorical setting.

In the talk, we show that many interesting enhanced simplicial categories, such as that of (∞, 1)-
categories possessing limits together with the pseudo and lax morphisms between them, admit certain
weighted limits. These include comma objects with one tight 0-arrow in the diagram, ∞-categorical
versions of equifiers and inserters, and some further advanced limits, all involving loose 0-arrows in
the corresponding diagrams. In particular, these results specialise to any model for (∞, 1)-categories,
generalising results on quasi-categories and also categories.
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The universal property of the decomposition space of
quasisymmetric functions

J. Kock

Joachim Kock ()

Abstract. The coalgebra QSym of quasisymmetric functions was shown by Aguiar, Bergeron, and
Sottile [1] to be the terminal object in the category of graded coalgebras with a zeta function. I’ll
explain an objective version of that result: QSym is the incidence coalgebra of a decomposition space
Q of monotone surjections, and its zeta function Z is given by the empty surjection and the connected
surjections [2]. We show that for any graded decomposition space X with a zeta function F , there is
a unique graded span of decomposition spaces

X
α←− J

φ−→ Q

where α is ikeo (inner Kan and equivalence on objects) and φ is culf (conservative and unique lifting of
factorisations) inducing F from Z. (Such spans induce coalgebra homomorphisms, and conjecturally
all.)

This is joint work with Philip Hackney and Jan Steinebrunner [3].
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Formal Day convolution and
low-dimensional monoidal fibrations

S. R. Koudenburg

Seerp Roald Koudenburg (roald@metu.edu.tr)
Middle East Technical University, Northern Cyprus Campus

Abstract.
Let T be a monad on an augmented virtual double category K, the latter in the sense of [1]. The

main result of this talk describes conditions ensuring that a formal Yoneda embedding y : A→ P in K
(in the sense of [2]) can be lifted along the forgetful functor U : Lax−T−Alg→ K, where Lax−T−Alg
is the augmented virtual double category of lax T -algebras.

Taking K = Prof the augmented virtual double category of profunctors and T the “free strict
monoidal category”-monad the main result recovers the Day convolution monoidal structure on the
category of presheaves P = SetA

op
on a monoidal category A. Taking the same monad on the

augmented virtual double category K = dFib of two-sided discrete fibrations instead, the main result
implies the “monoidal Grothendieck equivalence” of lax monoidal functors A → Set and monoidal
discrete opfibrations with base A (a variation on a result in [3] by Moeller and Vasilakopoulou).

Moving up a dimension, given a 2-monoidal 2-category A the main result likewise implies the
equivalence of lax 2-monoidal 2-functors A→ Cat and 2-monoidal locally discrete split 2-opfibrations
with base A. The main ingredient here is that (somewhat surprisingly) there exists an augmented vir-
tual double category that accommodates the lax natural transformations required to define the formal
Yoneda embedding induced by the Grothendieck equivalence for locally discrete split 2-opfibrations
(the latter obtained by Buckley [4] and Lambert [5]).

I will report on work in progress on “internalising” the equivalence for 2-monoidal locally discrete
split 2-opfibrations described above, thus obtaining an analogous equivalence for monoidal double split
opfibrations (double fibrations in the sense of Cruttwell, Lambert, Pronk and Szyld [6]).
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Poc sets and median algebras: A categorical duality

A. Krenz

Andrew Krenz (krenz3@wisc.edu)
University of Wisconsin - Madison

Alex Mine (mine2@wisc.edu)
University of Wisconsin - Madison

Abstract.
The construction of a monad from an adjunction has a generalization allowing certain kinds of

functors to induce monads as well. In particular, a functor whose target is rich enough in limits induces
a codensity monad. In the presence of a left adjoint, the codensity monad of a functor agrees with
the corresponding adjunction-induced monad. Since inclusion functors associated to subcategories of
finite objects are unlikely to admit a left adjoint, their codensity monads are of interest. Familiar
categories to consider are sets or vector spaces. In these cases, we get the ultrafilter and double
dualization monads [1]. The goal of this talk is to compute a dual pair of codensity monads analogous
to those just mentioned.

An important topic in geometric group theory is the study of group actions on trees. For this
purpose, two vast generalizations of trees arose independently: poc sets and median algebras. Boolean
algebras are an example of both, and in fact any set that simultaneously has suitably compatible
structures of a poc set and median algebra is a Boolean algebra. The two-element Boolean algebra
represents a pair of dualization functors between the categories of poc sets and median algebras. The
dual of a poc set is its median algebra of ultrafilters, and the dual of a median algebra is its poc
set of halfspaces [2]. In this talk, I will demonstrate that this pair of dualization functors exhibits
similar properties to the dualization functor on vector spaces. I will show how dualization fits into
a two-variable tensor-hom adjunction, and that both double dualization monads are the codensity
monads of inclusions from finite objects of each category. Time permitting, I will say more about the
kinds of Boolean algebras one can construct as the tensor product of a poc set and a median algebra.
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Higher Groupoids and Higher Generalised Morphisms

K. Krishna

Christian Blohmann (blohmann@mpim-bonn.mpg.de)
Max Planck Institute for Mathematics, Bonn

Kalin Krishna (kkrishn@mathematik.uni-goettingen.de)
University of Göttingen

Chenchang Zhu (chenchang.zhu@mathematik.uni-goettingen.de)
University of Göttingen

Abstract.
Higher groupoids play a crucial role in the active research area of interplay between higher cate-

gorical structures and other fields of mathematics. We give the notion of a Good Geometric category,
where one can define and study these higher structures with applications to geometry, for example
category of smooth manifolds. We define the notion of higher groupoids in Good Geometric categories
and organise them into an (∞, 1) category framework. The morphisms between the higher groupoids
are given by bibundles which are Kan fibrations over the interval. Higher morphisms will be modelled
by Kan fibrations over the higher simplices. This approach gives a more combinatorial and geomet-
ric way of approaching anafunctors and higher generalised morphisms between groupoids. This is of
particular interest in higher gauge theory and string theory, where the higher connection on higher
bundles will give the notion of parallel transport of strings and surfaces.
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The Grothendieck construction
in the context of tangent categories

M. Lanfranchi

Marcello Lanfranchi (marcello@dal.ca)
Dalhousie University

Abstract.
Cockett and Cruttwell in their investigation of vector bundles in the context of a tangent category

(cf. [3]), which led to the concept of differential bundles, came out with an important generalization of
the notion of fibrations: tangent fibrations. In a nutshell, a tangent fibration is a fibration between two
tangent categories, which is also a strict tangent morphism. Cockett and Cruttwell also realized that,
by pulling back along the zero morphism of the base tangent structure, the fibres of a tangent fibration
inherit a tangent structure. So, a tangent fibration can be sent to an indexed tangent category, which
is an indexed category whose fibres have a tangent structure, in a compatible way with the indexing
and the substitution functors between them.

Famously, the Grothendieck construction establishes an equivalence between (cloven) fibrations
and indexed categories (cf. [2]), so it is natural to wonder whether or not the operation introduced
by Cockett and Cruttwell which sends a tangent fibration to its indexed tangent category can be
extended to an equivalence. In particular, the question is whether or not we can reconstruct the total
tangent structure, i.e. the tangent structure over the total category, of the tangent fibration, starting
from the associated indexed tangent category.

The answer is only partial: by pulling back via the zero morphism we inevitably lose some infor-
mation about the total tangent structure. To solve this issue I explored a generalization of tangent
structures: the notion of tangent objects. A tangent object consists of an object in a given 2-category
together with a tangent structure on it. It is important to mention that in his thesis, Leung went close
to introducing this concept, by generalizing tangent structures over an arbitrary monoidal category
(see [4]. In my version, I generalize this notion over a 2-category instead) and Bauer, Burke, and
Ching employed a similar idea to introduce tangent ∞-categories in [1].

This simple generalization of a tangent category leads to interesting questions and new approaches
to the theory of tangent categories. In particular, tangent objects in the 2-category of fibrations
over a non-fixed base category are precisely tangent fibrations. From this observation, I proved the
main result: tangent fibrations are equivalent to tangent indexed categories (to not be confused with
indexed tangent categories mentioned earlier), which are tangent objects in the 2-category of indexed
categories over a non-fixed indexing category.

In my talk, I would like to briefly recall the definition of a fibration, of an indexed category, and
the Grothendieck construction in the classical case. Then, I would like to introduce the notion of
tangent fibrations, as presented by Cockett and Cruttwell, and briefly discuss their result which leads
to the notion of indexed tangent categories. I plan to discuss how to partially reconstruct the original
tangent fibration from the associated indexed tangent category and show what fails to be recovered.
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I will dedicate some time to introduce the main new technology: tangent objects, discuss a few im-
portant examples, like tangent categories, which are tangent objects in the 2-category of categories,
tangent monads, which turn out to be tangent objects in the 2-category of monads, and finally tan-
gent fibrations, as tangent objects in the 2-category of fibrations. Finally, I would like to unpack
the definition-theorem of the equivalence between tangent fibrations and the new notion of tangent
indexed categories.

My paper is available on Arxiv here:
https://arxiv.org/abs/2311.14643
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Identity objects and virtualisation

S. Lee

Sori Lee (sori24@gmail.com)
sorilee.github.io

Abstract.
In categorical logic, indexed preorders are an interpretation of many-sorted predicate logic. Taking

the view that many-sorted predicate logic is a highly truncated version of dependent type theory, we
obtain the following adaptation of the inductive axioms of identity types [1] to indexed preorders.

Definition. Let P 1 : (P 0)op → Pre∧,⊤ be an indexed (∧,⊤)-preorder over a binary-product category
P 0. An identity object on an object X ∈ P 0 is an element IdX ∈ P 1(X ×X), such that

1. (introduction or reflexivity) ⊤ ≤ (X
δ→ X ×X)∗(IdX), and

2. (elimination) for any object Y ∈ P 0 and p, q ∈ P 1(X ×X × Y ), if

(X × Y
δ×Y→ X ×X × Y )∗(p) ≤ (X × Y

δ×Y→ X ×X × Y )∗(q),

then (X ×X × Y
π1,π2→ X ×X)∗(IdX) ∧ p ≤ q.

We say P := (P 0, P 1) has identity objects if each X has an identity object.

This Martin-Löf notion of equality turns out, perhaps as expected, to be equivalent to Lawvere’s
one as extracted by Maietti and Rosolini in the notion of elementary doctrine [2]:

Theorem. An indexed (∧,⊤)-poset over a finite-product category has identity objects if and only if
it is an elementary doctrine.

This means Pasquali’s ‘elementary completion’ result [4] is telling us that the equivalence relations
construction P 7→ ER(P ) underlying Maietti and Rosolini’s ‘effective-quotient completion’ [3] is a
right-biadjoint completion that adds identity objects. Pasquali’s result adapted to our settings reads:

Theorem. The assignment P 7→ ER(P ) extends to a 2-functor IdxPre×,∧,⊤
pn → IdxPre×,∧,⊤,Id

pn that is
right biadjoint to the inclusion 2-functor.

Here, the notation e.g. IdxPre×,∧,⊤,Id
pn denotes the 2-category of indexed (∧,⊤)-preorders with

identity objects over binary-product categories, pseudonatural morphisms that preserves ×, ∧, ⊤ and
Id, and 2-morphisms; these morphisms and 2-morphisms are defined in the same way as in [2, 3, 4],
except that our morphisms have a pseudonatural-transformation component.

We produce an analogue of this result for the PER construction, the partial equivalence relations
version of the ER construction, which appears as a key step in the tripos-to-topos construction [5].

Let P be an indexed ∧-preorder over a binary-product category. The PER construction is given
by an indexed preorder PER(P ) defined in the same way as ER(P ) but with as objects in PER(P )0

partial equivalence relations in P instead. Now the following weakened form of identity objects allows
us to render the PER construction as a right-biadjoint completion.
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Definition. We say P has partial identity objects if each object X ∈ P 0 is equipped with an element
PIdX ∈ P 1(X ×X), such that

1. (partial reflexivity) PIdX ≤ (X ×X
π1→ X ×X)∗(PIdX), (X ×X

π2→ X ×X)∗(PIdX),

2. (paravirtual elimination) for each object Y ∈ P 0 and elements p, q ∈ P 1(X ×X × Y ), if

(X × Y
π1,π1→ X ×X)∗(PIdX) ∧ (X × Y

π2,π2→ Y × Y )∗(PIdY ) ∧
(X × Y

δ×Y→ X ×X × Y )∗(p) ≤ (X × Y
δ×Y→ X ×X × Y )∗(q),

then (X ×X × Y
π3,π3→ Y × Y )∗(PIdY ) ∧ (X ×X × Y

π1,π2→ X ×X)∗(PIdX) ∧ p ≤ q,

3. each arrow f : X → Y in P 0 satisfies PIdX ≤ (f × f)∗(PIdY ), and

4. PIdX×Y ≃ (X × Y ×X × Y
π1,π3→ X ×X)∗(PIdX) ∧ (X × Y ×X × Y

π2,π4→ Y × Y )∗(PIdY ).

Theorem. The assignment P 7→ PER(P ) extends to a 2-functor IdxPre×,∧
pn → IdxPre×,∧,PId

pn that is
right biadjoint to the forgetful 2-functor.

Indexed preorders with partial identity objects can be promoted to those with identity objects by
a construction we call virtualisation. This is in fact another step in the tripos-to-topos construction,
which turns the PERs into equivalence relations. An indexed preorder P is oplaxly sectioned if each
object X ∈ P 0 is equipped with an element osX ∈ P 1(X), and every arrow f : X → Y in P 0 satisfies
osX ≤ f∗(osY ). We regard an indexed preorder with partial identity objects as oplaxly sectioned, by
osX := (X

δ→ X ×X)∗(PIdX). Let P be an oplaxly sectioned indexed ∧-preorder.

Definition. The virtualisation of P is the indexed preorder Virt(P ) given by Virt(P )0 := P 0 and

Virt(P )1(X) := (USetP
1(X),

v
≤) where p

v
≤ q if and only if osX ∧ p ≤ q.

Virt(P )1 is in fact a Kleisli as well as Eilenberg-Moore object for a (necessarily idempotent)
comonad in the Pre-enriched category [(P 0)op,Pre∧]o of functors and oplax natural transformations.

Note that the osX become top elements in Virt(P ), and if P has partial identity objects, then the
PIdX become identity objects in Virt(P ). Virtualisation has the following universal properties; beware
that mainly oplax-natural morphisms are involved here, rather than pseudonatural morphisms.

Theorem. The assignment P 7→ Virt(P ) extends to a 2-functor IdxPre∧,os
on → IdxPre∧,⊤

on as well as a
2-functor IdxPre×,∧,PId

on → IdxPre×,∧,⊤,Id
on that is ambidextrously biadjoint to ‘the’ respective inclusion

2-functor. The left-biadjoint part also holds with respect to pseudonatural morphisms.
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Free Differential Storage Modalities

J.-S. P. Lemay

Jean-Simon Pacaud Lemay (js.lemay@mq.edu.au)
Macquarie University

Richard Garner ()
Macquarie University

Abstract.
Storage modalities provide the categorical interpretation of the exponential modality from Linear

Logic, while differential storage modalities [1, 2] do the same in Differential Linear Logic. Briefly, a
storage modality on a symmetric monoidal category with finite products is a comonad ! such that every
!A is naturally a cocommutative comonoid and we have the Seely isomorphism !(A × B) ∼= !A ⊗ !B.
A differential storage modality on an additive symmetric monoidal category with finite biproducts is
a storage modality ! which comes equipped with a natural transformation d : !A ⊗ A → !A, called
the deriving transformation, whose axioms are based on the fundamental identities of differentiation
such as the product rule and the chain rule. Using Kelly’s notion of algebraically-free commutative
monoids [3], we construct free differential storage modalities over storage modalities. A symmetric
monoidal category is said to be endowed with algebraically-free commutative monoids if for every
object X, there is an object S(X) equipped with a map S(X)⊗X → S(X) which is universal amongst
commutative right X-actions A ⊗X → X. Then for an additive symmetric monoidal category with
finite biproducts which is endowed with algebraically-free commutative monoids, for every storage
modality !, we get that !(−)⊗ S(−) is the free differential storage modality over !. In other words, in
this setting, the forgetful functor from the category of differential storage modalities to the category
of storage modalities has a left adjoint. Moreover, when taking ! to be the initial storage modality, we
get the initial differential storage modality which is related to the Faà di Bruno construction [2] and
also recaptures the exponential modality in Clift and Murfet’s Differential Linear Logic model [4].
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[1] Blute, R. F., Cockett, J. R. B., Lemay, J.-S. P., & Seely, R. A. (2020). Differential categories

revisited. Applied Categorical Structures, 28, 171-235.
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3 CONTRIBUTED TALKS

16:00 - Tuesday

106 Full Schedule



Homotopy colimits enriched over a general base

G. Leoncini

Giuseppe Leoncini (leoncini@math.muni.cz)
Masaryk University

Abstract.
Starting from a 1-categorical base V which is not assumed endowed with a choice of model structure

(or any kind of homotopical structure), we define homotopy colimits enriched in V in such a way that,
for V = Set, we retrieve the classical theory as presented in [1] and [3]. We construct the free homotopy
V-cocompletion of a small V-category and show that it satisfies the expected universal property. For
V = Set, we retrieve Dugger’s construction of the universal homotopy theory on a small category C.
We define the homotopy theory of internal ∞-groupoids in V as the homotopy V-cocompletion of a
point, and argue that V-enriched homotopy colimits correspond to colimits in ∞-categories enriched
in internal ∞-groupoids in V, thus providing a convenient model to perform computations. Again,
taking V = Set, this retrieves the classical notions for ordinary (∞, 1)-categories. We compare our
approach with some previous definitions of enriched homotopy colimits, such as those in [4] and [6].
As an application, we settle, for any group, a conjecture that in the case of a finite group was recently
proven by completely different methods in [5]: we show that the so-called genuine homotopy theory
of G-spaces is the G-equivariant homotopy cocompletion of a point. We conclude providing further
examples of homotopy theories that can be seen as homotopy V-cocompletions for a suitable choice
of enrichment.
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Logical Structure in (Homotopical) Inverse Functor Categories

Y. Li

Marcelo Fiore (marcelo.fiore@cl.cam.ac.uk)
University of Cambridge

Krzysztof Kapulkin (kkapulki@uwo.ca)
University of Western Ontario

Yufeng Li (yufeng.li@cl.cam.ac.uk)
University of Cambridge

Abstract.
Reedy categories have been the subject of interest in categorical homotopy theory due to their

ability to give an explicit, yet general, construction of the model structure on the category of simplicial
objects in a model category. Inverse categories, which are the special case of Reedy categories where
all (non-invertible) maps lower degree, have also been of interest: for instance, in type theory, [3] used
them to provide a partial solution to the homotopy canonicity hypothesis, while [1] used them to put
a model structure on the category of models of type theory. In both of these cases, one shows that
if E is a model of type theory and I is an inverse category then EI forms a model of type theory as
well. In [2], it is further shown that the category of homotopical diagrams EI−1I (that is, the full
subcategory of functors I → E inverting all maps) is closed under much of the type-theoretic logical
structure of EI . While this result is sufficient for most type-theoretic considerations, it is natural
to consider generalisations when I is equipped with weak equivalences W. In this talk, we further
consider the following questions and provide affirmative answers to them.

• Can one find conditions on W such that γ∗ : EW−1I → EI is ensured to preserve the logical
structure? In particular, as the techniques of [2] used to show the preservation of dependent
products rely heavily on the assumption that all maps are inverted in I, can one weaken this
condition?

• Can one isolate the type-theoretic aspects from the logical aspects? For example, can one show
that if E is a topos then so is EI?

Here, we take advantage of the inverse structure of I to prove, for a category E (not necessarily a
topos or a model of type theory), the following.

Definition. For each i ∈ I, write I−(i) for the full subcategory of i/I spanned by the strictly degree-
lowering maps, write ∂(i/W−1I) for the full subcategory of i/W−1I with the initial object removed,
and write GnI for the full subgroupoid of I spanned by the objects of degree n ∈ N. Further, for each
i ∈ I, denote by Mi : EI → E the matching object functor.
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Theorem 1. Assume that, for each i ∈ I, the restriction of the localisation γ : I → W−1I given
by γ|i : I−(i) → ∂(i/W−1I) is an initial functor and that all limits indexed by I−(i) exist in E.
Then, if dependent products along f : B → A in EW−1I exist, one also has dependent products along
γ∗f : γ∗B → γ∗A in EI . Furthermore, the canonical map γ∗ Πf ⇒ Πγ∗f γ

∗ : EW−1I/B → EI/γ∗A is
an isomorphism.

This result generalises that of [2]; for instance, when I = · → · → ·, inverting either of the arrows
preserves dependent products.

In proving Theorem 1, we show the following.

Lemma 2. For a functor F : D → C that preserves pullbacks, the dependent product in C ↓ F along
(f, g) : (b, y, β)→ (a, x, α)

b a

Fy Fx

f

β α

Fg

exists provided that dependent products along f : b → a and Fg : Fy → Fx in C, and g : y → x in D
exist.

One concludes Theorem 1 using that Reedy induction in the inverse case, as also noted by [4], allows
the construction of indexed diagrams by iterative gluing. Also by way of iterative gluing, we further
show the following.

Theorem 3. Assume all limits indexed by I−(i) exist in E for each i ∈ I. If E has a subobject
classifier, then so does EI provided that either GnI is connected for each n ∈ N or E has an initial
object. In addition, and independent of subobject classifiers, dependent products along f : B → A in
EI exist provided that dependent products along fi : Bi → Ai and Mif : MiB → MiA in E exist for
each i ∈ I.

Our result, in contrast to the type-theoretic results of [2], centres on the logical structure of categories
of diagrams; for instance, when I is an inverse category and E is a topos then so is EI .

References
[1] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The homotopy theory of type theories. Advances

in Mathematics, 337:1–38, 2018.

[2] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. Homotopical inverse diagrams in categories
with attributes. Journal of Pure and Applied Algebra, 225(4):1–44, 2021.

[3] Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical Struc-
tures in Computer Science, 25(5):1203–1277, November 2014.

[4] Michael Shulman. Reedy categories and their generalizations, 2015.

3 CONTRIBUTED TALKS

17:00 - Thursday

109 Full Schedule



Semicartesian categories of relations

B. Lindenhovius

Gejza Jenča1 (gejza.jenca@stuba.sk)
Slovak University of Technology, Bratislava, Slovakia

Bert Lindenhovius2 (lindenhovius@mat.savba.sk)
Mathematical Institute of the Slovak Academy of Sciences, Bratislava, Slovakia

Abstract.
Quantization is the process of generalizing mathematical structures to the noncommutative setting.

Many quantum phenomena have classical counterparts, and can often be modelled by quantized
versions of the mathematical structures modelling these classical counterparts. Recently, several
mathematical structures have been quantized via a quantization method based on Weaver’s notion of a
quantum relation between von Neumann algebras [10], which he distilled from his work with Kuperberg
on the quantization of metric spaces [9]. Quantum relations can be regarded as noncommutative
versions of ordinary relations, and admit a rich relational calculus that allows us to generalize concepts
to the noncommutative setting. Building on these concepts, Weaver quantized posets [10] and showed
that quantum graphs [2], which are used for quantum error correction, can be understood in terms of
quantum relations [11].

Von Neumann algebras are rather noncommutative generalizations of measure spaces than of sets.
Kornell identified hereditarily atomic von Neumann algebras, which are essentially (possibly infinite)
sums of matrix algebras, as the proper noncommutative generalizations of sets. For this reason,
hereditarily atomic von Neumann algebras are also called quantum sets, and the category qRel of
quantum sets and quantum relations can be regarded as the proper noncommutative generalization of
the category Rel of sets and binary relations. Unlike the category of all von Neumann algebras and
quantum relations, qRel is dagger compact closed, just like Rel. Together with Kornell and Mislove,
the second author investigated the categorical properties of quantum posets in this restricted setting
of hereditarily atomic von Neumann algebras [8]. Building on this work, they introduced quantum
cpos, which are noncommutative versions of ω-complete partial orders (cpos). Ordinary cpos can
be used to construct denotational models of ordinary programming languages, and in a similar way,
they showed that quantum cpos can be used for the denotational semantics of quantum programming
languages [7]. Also building on the definition of quantum posets in the hereditarily atomic setting,
we introduced quantum suplattices [5], which are noncommutative versions of complete lattices and
supremum-preserving maps. For the definition of quantum suplattices, the compact structure of qRel
seems to be essential.

Categorically, quantization via quantum relations can be understood as the internalization of math-
ematical structures in the category qRel, and many theorems about quantized structures via quantum

1Supported by VEGA-2/0128/24, VEGA-1/0036/23 and APVV-20-0069
2Supported by VEGA 2/0128/24 and APVV-22-0570
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relations rely on the categorical properties of qRel. There are several categorical generalizations of
the category Rel such as allegories [3] or bicategories of relations [1], but unfortunately, qRel is not
an example of either of them. This is mainly due to the fact that the internal functions of qRel
form a semicartesian monoidal category rather than a cartesian monoidal category, which reflects the
quantum character of qRel. Tweaking the definitions of either allegories or bicategories of relations
is difficult; their cartesian character seems to be essential.

Therefore, we aim to find a different categorical generalization of Rel that would capture qRel.
We take daggers as a primitive notion, and identify six properties of qRel as axioms for our categorical
generalization of Rel. Similar properties also occur in recent categorical axiomatizations of several
dagger categories such as the category Hilb and Rel [4, 6], and likely will form a subset of the axioms
of a future categorical characterization of qRel. Hence, we define a semicartesian category of relations
to be a category R such that

(1) R is a locally small dagger compact category;
(2) R has all small dagger biproducts;
(3) R has precisely two scalars;
(4) R is a dagger kernel category;
(5) For each object X in R there is precisely one morphism X → I with zero kernel;
(6) For each object X and each projection p on X, p ≥ idX if and only if ker p = 0.

Here, a projection on an object X is a morphism p : X → X such that p ◦ p = p = p†. For the
last axiom, we use that the first three axioms imply that R is a quantaloid, i.e., a category enriched
over the category Sup of complete lattices and supremum-preserving maps. As another consequence
of the axioms, we prove that the homsets of R are actually orthomodular lattices. We conclude
with a discussion of conditions that assure the existence of a power set construction in semicartesian
categories of relations.
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Sketches and Classifying Logoi

G. Lobbia

Ivan Di Liberti (diliberti.math@gmail.com)
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Gabriele Lobbia (gabriele.lobbia@unibo.it)
Università di Bologna

Abstract. This talk is based on the preprint [4].

The notion of sketch was introduced by Ehrensmann [3, 5]. It consists of a category together with
a specification of certain cones and cocones. Using the idea that certain logical operations can be
described through limits and colimits, sketches have been considered as one of the many formalisation
of the concept of theory [2, 7, 8]. In particular, they can be used to present theories in infinitary
logics.

The aim of this work is to extend what was done with sites and topoi in the context of geometric
logic to infinitary logic introducing the notions of rounded sketch and logos. More precisely, we want
to replicate the pattern that sites are presentations of geometric theories and that the classifying
topos gives a syntax independent avatar of the theory. In a similar way our notion of rounded sketch
gives the presentation of any infinitary theory (including geometric ones) and the classifying logos its
syntax independent presentation.

Logic Fragment Presentation Morita Classifying Object

Geometric Site Topos

Infinitary Rounded Sketch Logos

We start showing some nice (topological) properties of the 2-category of sketches, which turn out
to be useful for some important constructions. For instance, we give an explicit formula to calculate
weighted pseudo co/limits in the 2-category of sketches and we prove that the tensor product for
sketches (studied by Benson in [1]) is closed.

Then, we provide some normalisation constructions which will be useful for our main result, a
Diaconescu-like theorem for rounded sketches and logoi. More precisely, for an appropriate notion of
Morita smallness, we show that for any Morita small sketch S we can construct its left sketch classifier
Ŝ, i.e. a left sketch together with a sketch morphism JS : S → Ŝ inducing, for any left sketch M, an
equivalence as below.

− ◦ JS : LSkt(Ŝ,M)→ Skt(S,M)
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Moreover, we use this result to prove that the (̂−)-construction restricted to rounded sketches
shows that the 2-category LogM of Morita small logoi is (bi)reflective in the 2-category rSktM, of
Morita small rounded sketches.

rSktM LogM
U

Cl[−]

⊤

This result generalises similar known ones for classifying topoi and Φ-exact categories [6], sum-
marised in the commutative (not considering the dashed arrows) diagram below.

Φ-ex MSite rSktM

∞-ExM Topoiop LogM

PΦ
Sh

Cl[−]
J

JU ⊣ ⊣ ⊣
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Bicategories for automata theory

F. Loregian

Fosco Loregian (fosco.loregian@taltech.ee)
Tallinn University of Technology

Abstract.
It has long been known [EKKK74] that automata can be interpreted within every monoidal cate-

gory (K,⊗, I); the cornerstone results in this direction are essentially three:

S1. if T : K → K is a commutative monad, ‘Mealy’ and ‘Moore’ machines in the (monoidal) Kleisli
category KT are ‘non-deterministic’ machines for a notion of fuzziness prescribed by T (examples
of this are: exceptions monads, various probability monads, the powerset monad);

S2. if K is closed, one can characterize Mealy and Moore machines coalgebraically [Jac06], and this
provides a slick proof of the cocompleteness of the categories Mly(A,B) and Mre(A,B) that
they form [AT90];

S3. if (and curiously enough, only if ) K is Cartesian monoidal, Mly(A,B) is the hom-category of
a bicategory Mly [Gui74, KSW97], and Mre(A,B) the hom-category of a semibicategory (a
bicategory without identity 1-cells, cf. [Mit72, MBCB02] and [BFL+23]) Mre.

Starting from the well-known principle that regards a monoidal category as nothing but a single-
object bicategory, we fix a general bicategory B and study ‘abstract machines’ in B, i.e. diagrams of
2-cells of the form

X
i ��

e

ww

o

''

ks
σ

X

e ��
Y

+3δ

where i, e, o are 1-cells respectively dubbed the ‘input’ 1-cell, the ‘state’ 1-cell and the ‘output’ 1-cell.
We then proceed to find parallels for S1, S2, S3 in this more general setting:

B1. let T be a monad on Set and (V,⊙,⊥) a quantale. The study of bicategorical machines in the
bicategory of (T, V )-relations of [HST14] accounts for notions of non-determinism that are mod-
eled on topologies, approach structures, metric and ultrametric structures, Kuratowski closure
spaces, and all the likes of structures studied by monoidal topology;

B2. in perfect parallel with the monoidal case, the behaviour of a Mealy/Moore machine can be
characterized through a universal property [Gog72]; a terminal coalgebra for monoidal machines,
a weighted limit of sorts for bicategorical machines. In the case of Moore machines the description
is prettier, in terms of a (pointwise) right extension. This clarifies long-forgotten remarks by
Bainbridge [Bai75] on properties of abstract machines seen as Kan extensions;
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B3. passing from single- to multi-object bicategories, we gain an additional degree of freedom by
indexing hom-categories over generic objects; in particular, we gain a rich compositional struc-
ture that was not present in the monoidal case, a way of composing machines that is neither
sequential nor parallel and that we dub intertwining.

This talk presents, and expands on, joint works with A. Laretto, G. Boccali, B. Femić, S. Luneia, see
[BLLL23, BFL+23]
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Doubly-infinitary distributive categories

F. Lucatelli Nunes

Fernando Lucatelli Nunes (f.lucatellinunes@uu.nl)
Utrecht University

Matthijs Vákár (m.i.l.vakar@uu.nl)
Utrecht University

Abstract.
A common question in category theory is how limits and colimits interact with each other. One

of the most benign kinds of interaction is that of a (pseudo)distributive law ; for instance, finitary and
infinitary distributive categories [1], and completely distributive categories [4].

In [3], we explore the realm of categories with products and coproducts, featuring a distributive
law between them, which we term doubly-infinitary distributive categories. This notion serves as an
intermediary between infinitary distributive categories and completely distributive ones.

We show various instances of doubly-infinitary distributive categories aiming for a comparative
analysis with established notions such as extensivity, infinitary distributiveness, and cartesian closed-
ness. Our exploration reveals that this condition represents a substantial extension beyond the clas-
sical understanding of infinitary distributive categories. We also remark that free doubly-infinitary
distributive categories are cartesian closed.

In this talk, we intend to address some of these insights. The talk is mostly based on [2, 3] and
ongoing work.
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The Giry monad revisited

D. Luckhardt

Daniel Luckhardt (d.luckhardt@sheffield.ac.uk)
University of Sheffield

Abstract.
The thesis of this contribution is that one does not have to restrict the class of measurable spaces

under consideration to develop a fruitful theory of probability. To this end we suggest a variation of
the concept of the Giry monad. As in Giry’s legendary paper, we motivate the new concept by study
of preservation of limits contributing new results. As an application we show that the Wasserstein
distance is actually a distance on the probability measures considered in our set-up.

Motivation.
In 1982 Giry introduced her concept of Giry monad in two variations—first, as a monad on the

category Meas of measurable spaces1 and, second, as a monad on the category of Polish spaces. Both
are motivated with preservation of limit properties, which turn out to be stronger in the later case.

Around the same time, some deep exploration of measure theory was still taking place: [1, 2, 3, 5].
Unfortunately, it seems that the relevance of the remarkable and miraculous result of Pachl [2] for
a categorical approach to probability was not spotted. Actually, it enables one, to generalise Giry’s
results for Polish spaces to measurable spaces.

When working with general measurable spaces and measures thereon some limitations occur:

1. projections of measurable sets are not necessarily measurable

2. the Giry monad does not necessarily (weakly) preserve directed limits2, and

3. countably generated σ-algebras are normally too small to model the notion of “almost surely”.

Classically, these issues are addressed by restricting the class of spaces under consideration—with
analytic spaces (including Polish spaces) being the most general class that allows for a rich theory
(actually, this approach basically transfers limitation 1 into a definition). But analytic spaces do not
encompass the theory of distributions, i.e. discrete measures on arbitrary sets, which play a paramount
role in logic and computer science. A solution to limitation 3 is to enlarge the σ-algebra by completing
it. Though this process comes at a price: Since a countable representation is lost, one is often forced
into a situational choice.

Another problem is that quite natural “large” examples are excluded by the classical approach, e.g.
the measurable space induced by the well-known French railway metric defined on the set R2:

d(u, v) =

{
||u| − |v|| if u = rv for some r ∈ (0,∞)

|u|+ |v| else
for u, v ∈ R2 (1)

1i.e. pairs (X,A) of a set X and a σ-algebra A
2in elementary terms: given consistent probabilities on the objects of a diagram in Meas a probability on the limit

need not exist
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modelling all potential railway lines in France. As for more categorical limitations, note that analytic
spaces can have at most the cardinality of the continuum, so arbitrary limits and colimits are already
excluded by size.

We suggest to remedy the situation as follows: Instead of excluding certain measurable spaces, we
restrict the Giry monad. Namely, let a law on a measurable space (X,A) be a probability measure
thereon, such that it extends to a probability measure p′ on a larger set Xp ⊇ X on which a σ-algebra
Ap generated from a semicompact paving3 is given such that A is a subset of the p′-completion of Ap.
This approach generalises the notion of a Radon space. Probably, this idea appeared to one or the
other already. But they then failed to form a functor therefrom, as one must guarantee that the
push-forward of a law along a measurable map is again a law. Surprisingly, Pachl proved this in 1979
[2] (see also [6, 452R]). So we define the Giry monad on (X,A) to be the collection of laws on (X,A).
Results.

As directed limits are not preserved by the Giry monad as defined by Giry [4], she had to impose a
technical condition. Only in the case of Polish spaces, which she discusses only for the index set ωop,
she could avoid this technical condition. We prove limit preservation in the case of our Giry monad
holds for general directed index categories on measurable spaces.

Moreover, we discuss other limit shapes, especially pushouts, where we can provide a result of weak
limit preservation. In this context, we can also show that the Wasserstein distance is a distance, i.e.
satisfies the triangle inequality, for laws. Classically, the Wasserstein distance is only considered for
probability measures on separable metric spaces, where it is a corner stone of several industries—e.g.
optimal transport or concurrency theory in computer science. To round up the discussion, we give a
negative examples of shapes that are not preserved, e.g. equalisers.

For analytic spaces, our Giry monad coincides with Giry’s original definition. The same holds in
the example expressed in (1). We also add a few propositions paving the way to a further development
of probability (and measure) theory based on the current suggestion.

We conclude with some set theoretic remarks. Moreover, we give some thoughts on how to “extend”
our approach to analytic spaces, i.e. define a measure that looks like a measure on an analytic space.

The speaker is supported by EPSRC NIA Grant EP/X019373/1
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V -graded categories and V -W -bigraded categories:
Functor categories and bifunctors over non-symmetric bases

R. Lucyshyn-Wright

Rory Lucyshyn-Wright (lucyshyn-wrightr@brandonu.ca)
Brandon University

Abstract. Categories graded by a monoidal category V , or (V -)graded categories, were introduced
by Wood [1] under the name large V -categories, and they simultaneously generalize both V -enriched
categories and V -actegories in the absence of any assumptions on V ; also see [2, 3, 4]. Explicitly,
V -graded categories may be defined as categories enriched in the presheaf category V̂ = [V op, SET]
with its Day convolution monoidal structure, while they also admit a direct elementwise definition.

Given an arbitrary strict monoidal category V , we show that V -graded categories support a robust
theory of graded functor categories and bifunctors, enabled by a notion of bigraded category that we
introduce. This is in contrast with the usual settings of enriched category theory, where the definition
of enriched functor categories and bifunctors employs a symmetry [5], braiding, or duoidal structure
on V [6] and so is not applicable when working with just a biclosed monoidal category V or, more
generally, a closed bicategory, where one nevertheless has a robust theory of V -modules and of V -
categories of V -valued presheaves [7, 8], but these are not defined in terms of bifunctors and functor
categories.

We develop our results on graded functor categories in a general setting that begins with a given
pair of strict monoidal categories V and W . Writing W rev to denote the reverse of W , we consider both
V -graded categories and W rev-graded categories, calling the former left V -graded categories and the
latter right W -graded categories. A V -W -bigraded category is then a left (V ×W rev)-graded category
and so has both an underlying left V -graded category and an underlying right W -graded category.
For example, both V and V̂ underlie V -V -bigraded categories.

Given a left V -graded category A and a V -W -bigraded category C , we show that there is a
right W -graded category [A ,C ] = [A ,C ]V

W whose objects are (left) V -graded functors from A to
C . Similarly, given a right W -graded category B and a V -W -bigraded category C , we obtain a left
V -graded category [B,C ] = [B,C ]WV whose objects are right W -graded functors from B to C . In
particular, if D is a left V -graded category, then its opposite Dop is a right V -graded category, so if
C is a V -V -bigraded category then [Dop,C ] is a left V -graded category.

Given a left V -graded category A and a right W -graded category B, we construct a V -W -
bigraded category A ⊠ B whose objects are pairs (A,B) with A ∈ obA and B ∈ obB. Given
also a V -W -bigraded category C , we may therefore consider V -W -bigraded functors of the form
F : A ⊠ B → C , which provide a notion of bifunctor in the graded setting. Writing GCATV ,
GCATW , and GCATV W for the 2-categories of left V -graded categories, right W -graded categories,
and V -W -bigraded categories, respectively, we show that there are 2-natural isomorphisms

GCATV (A , [B,C ]) ∼= GCATV W (A ⊠ B,C ) ∼= GCATW (B, [A ,C ]) .
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In the special case where V is symmetric monoidal and we take W = V , there is no essential
distinction between left and right V -graded categories, while every V -graded category is canonically
V -V -bigraded, and we recover the V -graded functor categories and bifunctors that were studied by
Wood [1, §1.6] and coincide with the usual V̂ -enriched concepts for the symmetric monoidal category
V̂ = [V op, SET], though A ⊠B does not coincide with the monoidal product of V̂ -categories A ⊗B.

Given an arbitrary strict monoidal category V and a pair of right V -graded categories A and B,
we may consider V -V -bigraded functors F : Bop ⊠ A → C valued in any V -V -bigraded category
C , and we call these V -graded modules from A to B in C . Passing to the special case where
C = V̂ , we show that V -graded modules in V̂ are precisely V̂ -modules between V̂ -categories, in the
sense obtained by specializing [7, 8] to base of enrichment V̂ = [V op, SET]. Furthermore, we show
that the V̂ -enriched presheaf V̂ -category PB that is obtained by applying Street’s enriched presheaf
construction [7] relative to the base of enrichment V̂ is precisely the right V -graded category [Bop, V̂ ]
that is obtained as an example of the above general construction of graded functor categories.
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Slack Hopf monads

I. López Franco

Alain Bruguières (alain.bruguieres@umontpellier.fr)
Université de Montpellier

Mariana Haim (marianahaim@gmail.com)
Universidad de la República
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Universidad de la República

Abstract.
In this talk, based on [1], we introduce slack Hopf monads and investigate their connection to

the quasi-Hopf algebras of Drinfel′d. Opmonoidal monads are monads compatible with the monoidal
structure: their Eilenberg-Moore category is monoidal and the forgetful functor is strong monoidal [2].
A left Hopf monad is an opmonoidal monad satisfying an extra rigidity condition that on a monoidal
left closed category ensures that: (a) the Eilenberg-Moore category is left closed too, and; (b) the
forgetful functor is a strong closed functor [3]. In slack left Hopf monads the condition (b) is relaxed
to an (essentially unique) slack Hopf structure. Furthermore, the condition of monoidality is dropped,
requiring only a magma category. This allows to capture the monads induced by tensoring with
a quasi-Hopf algebra (these are not necessarily opmonoidal nor Hopf). We characterise quasi-Hopf
algebras among those quasi-bialgebras that induce slack Hopf monads.
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Weak equivalences between algebraic weak ω-categories

Y. Maehara
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Abstract.
A weak ω-category in Leinster’s sense [1] (see also Batanin [2]) has “all” the operations that a strict

ω-category has, but need not satisfy any of the relations. In this setup, one can generalise certain
arguments concerning strict ω-categories to weak ones by encoding relations as operations.

For example, consider the unit law. Given a 1-cell f : x→ y in a weak ω-category, we can make sense
of the expression f ◦ 1x (because we have all the operations, including identities and compositions),
but the relation f ◦ 1x = f does not necessarily hold. Instead, we can consider the operation in a
strict ω-category that takes a 1-cell f and spits out a(n identity) 2-cell f ◦ 1x → f . This operation
can be lifted to the weak ω-category, and (using a result [3] presented at CT2023) one can check that
the resulting 2-cell is invertible in a suitable sense, establishing a kind of unit law.

In this talk, I will describe how to make use of such encoding and prove that the class of weak
equivalences (an ω-dimensional version of essentially surjective, fully faithful functors) enjoys the 2-
out-of-3 property, i.e. if any two of F , G and GF are weak equivalences then so is the third, generalising
the strict case treated in [4].
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Internalization of decorated bicategories via π2-indexings

J. R. Maldonado-Herrera

Juan Orendain (juan.orendain@case.edu)
Case Western Reserve University

Jose Ruben Maldonado-Herrera (rubasmh@matmor.unam.mx)
CCM, Universidad Nacional Autónoma de México

Abstract.
Given a bicategory B, and a category B∗, such that the collections of objects of B and B∗ are

equal, we wish to construct interesting double categories D having B as horizontal bicategory, and
having B∗ as category of objects. We say that the pair (B∗,B) is a decorated bicategory and D is
an internalization of (B∗,B). The problem of understanding internalizations of decorated bicategories
has been considered in the series of papers [1, 2, 3], where the definition of a numerical invariant,
called the vertical length ℓD, associated to every double category D, was introduced. Roughly, the
number ℓD measures the amount of work one would be expected to do to construct a generic square
in D, from squares in (D0, HD). 1 is the minimum possible length of a double category, and most
double categories in the literature, e.g. Mod,Prof ,Bord,Adj are of length 1.

The particual problem of deciding whether a decorated bicategory (B∗,B) admits internalizations
of length 1 has been study in [4]. We present a type of structure allowing to construct internalizations
of lenght 1. We call the structure we study π2-indexings, which are a type of indexing associated to a
decorated bicategory (B∗,B), relating the arrows of B∗ with 2-cells of a specific type in B. The goal
of the talk is to present the main results in [4], examples and conjectures related to the problem.
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On the representability of actions of non-associative algebras

M. Mancini

Manuel Mancini (manuel.mancini@unipa.it)
Università degli Studi di Palermo, Italy

Abstract.
It is well known that in the semi-abelian category Grp of groups, internal actions are represented by
automorphisms. This means that the category Grp is action representable and the representing object,
which is called the actor, is the group of automorphisms. Another example of action representable
category is the variety Lie of Lie algebras over a fixed field F, with the actor of a Lie algebra g being
the Lie algebra of derivations Der(g). The notion of action representable category has proven to be
quite restrictive: for instance, if a non-abelian variety V of non-associative algebras over an infinite
field F, with char(F) ̸= 2, is action representable, then V = Lie. More recently G. Janelidze introduced
the notion of weakly action representable category, which includes a wider class of categories, such as
the variety Assoc of associative algebras and the variety Leib of Leibniz algebras.

In this talk we show that for an algebraically coherent and operadic variety V and an object X of
V, it is always possible to construct a partial algebra E(X), called external weak actor of X, and a
natural monomorphism of functors

τ : Act(−, X) ↣ HomPAlg(U(−), E(X)),

where PAlg is the category of partial algebras over F and U : V → PAlg denotes the forgetful functor.
The pair (E(X), τ) is called external weak representation of the functor Act(−, X). Moreover, for any
other object B of V, we provide a complete description of the morphisms (B → E(X)) ∈ Im(τB),
i.e. of the homomorphisms of partial algebras which identify the actions of B on X in V, and we
show that the existence of a weak representation is closely connected to the amalgamation property,
which we use to prove that the variety CAssoc of commutative associative algebras is weakly action
representable.

Eventually, we give an application of the construction of the external weak actor in the context of
varieties of unital algebras, which are ideally exact categories in the sense of G. Janelidze: we prove
that, if V = Alt is the variety of alternative algebras and X is a unital alternative algebra, then
E(X) ∼= X is the actor of X. In other words, unital alternative algebras, such as the algebra O of
octonions, have representable actions.

This is joint work with J. Brox, (Universidad de Valladolid, Spain), Alan S. Cigoli (Università
degli Studi di Torino, Italy), Xabier García Martínez (Universidade de Vigo, Spain), Giuseppe Me-
tere (Università degli Studi di Milano, Italy), Tim Van der Linden and Corentin Vienne (Université
catholique de Louvain, Belgium).
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Opposites and hom weak ω-categories

I. Markakis

Thibaut Benjamin (tjb201@cam.ac.uk)
University of Cambridge

Ioannis Markakis (ioannis.markakis@cl.cam.ac.uk)
University of Cambridge

Abstract. This talk is based on our recent preprint [1]. We work with globular weak ω-categories,
using a recent formulation for them and their computads proposed by Dean et al. [3]. We define
opposites of a weak ω-category, changing the direction of all cells whose dimension belongs to a given
set. We also give an alternative construction of the hom ω-categories of an ω-category to that of
Cottrell and Fujii [2]. We then show that it has an left adjoint and that it preserves the property of
being cofibrant.

Computads are structures out of which one can generate weak ω-categories. They consist of sets of
generators together with attachment maps, assigning a source and target to each generator. In Dean
et al. [3], first, the category Comp of computads and morphisms of ω-categories is defined inductively
on dimension, together with an adjunction with the category Glob of globular sets

Glob Comp
Free⊣

Cell
.

Here, the functor Cell takes a computad to the underlying globular set of the ω-category that it
generates, the elements of which are either generators, or formal applicatons of operations of weak
ω-categories (compositions and coherences). Then ω-categories are defined as the algebras for the
induced monad on globular sets, which was shown to agree with that of Batanin and Leinster [5]. It
was further shown by Garner [4] that ω-categories generated by a computad are the cofibrant objects
for certain weak factorisation system.

We use a similar technique to construct the opposites and the homs of an ω-category. We start
with an adjunction on the level of globular sets:

Glob Glob
op

⊣

op
Glob Glob⋆⋆

Σ⊣

Ω

where Glob⋆⋆ is the category of globular sets with two chosen objects. The functor op is defined with
respect to a set of dimensions w ⊂ N>0, by swapping the source and target of every element whose
dimension belongs to w. The functor Ω takes a globular set with two chosen objects to the globular
sets of elements between those objects, and the suspension ΣX is the globular set with two objects,
such that Ω(ΣX) = X. We then observe that in both cases the left adjoint preserves the globular
pasting diagrams, which are the arities of the operations of weak ω-categories. Using this observation,
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we define the opposite and the suspension of a computad together with natural transformations, as
shown in the diagrams below:

Glob Comp Glob

Glob Comp Glob

Free

op =

Cell

op op

Free Cell

∼
Glob Comp Glob

Glob⋆⋆ Comp⋆⋆ Glob⋆⋆

Free

Σ =

Cell

Σ Σ

Free Cell

The mates of those natural transformations under the respective adjunctions give rise to morphisms
of monads, hence they lift as functors op : ω Cat→ ω Cat and Ω : ω Cat⋆⋆ → ω Cat. The functor op is
an equivalence of categories with itself as its inverse, and by the adjoint lifting theorem, the functor
Ω admits a left adjoint Σ.

Finally, we show that the functors op, Ω and Σ preserve the cofibrant objects, by describing a
recognition principle for free ω-categories on a computad. We also show that the opposite of a hom
ω-category is the hom of the some opposite of the original ω-category, as expected.
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Limit-sketchable infinity categories

D. Martínez-Carpena

Carles Casacuberta (carles.casacuberta@ub.edu)
Universitat de Barcelona

Javier J. Gutiérrez (javier.gutierrez@ub.edu)
Universitat de Barcelona

David Martínez-Carpena (martinezcarpena@ub.edu)
Universitat de Barcelona

Abstract.
A presentable ∞-category is an accessible localization of an ∞-category of presheaves over some

small ∞-category. Presentable ∞-categories play a key role in the study of higher topoi [2], stable
∞-categories and higher algebra. In ordinary category theory, a limit sketch is a categorical formal-
ization of the notion of an essentially algebraic theory. The Representation Theorem of Adámek and
Rosický [1] states that locally presentable categories are equivalent to categories of models of limit
sketches.

In our research, we prove an analogous representation theorem in the context of ∞-categories, by
showing that an ∞-category is presentable if and only if it is limit-sketchable. Moreover, we show
that numerous ∞-categories, including complete Segal spaces, ∞-operads, E∞-algebras, spectra, and
infinite loop spaces, can be constructed as∞-categories of models of limit sketches. Our representation
theorem yields explicit presentable structures underlying each of the examples that we consider. This
is joint work with Carles Casacuberta and Javier J. Gutiérrez.
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No-iteration transitions and no-iteration distributive laws for
pseudomonads

E. S. Martínez Ruiz

Francisco Marmolejo (quico@im.unam.mx)
Instituto de Matemáticas, UNAM.

Eduardo Sebastián Martínez Ruiz (es.martinez.rz@gmail.com)
Instituto de Matemáticas, UNAM.

Enrique Ruíz Hernández (e.ruiz-hernandez@cinvcat.org.mx)
CINVCAT

Adrián Vázquez Márquez (a.vazquez-marquez@cinvcat.org.mx)
CINVCAT

Abstract.
The distributive laws for monads were introduced by J. Beck in [Beck, 1969], then years later these

ideas were extended to high dimensional categories. F. Marmolejo defined a distributive law between
pseudomonads in [Marmolejo, 1999] and the four 2–cells requested in this definition (two triangles
and two pentagons) are subject to nine coherence conditions.
A few years later in the thesis [Tanaka, 2005], an extra coherence condition apart from the nine
described in the paper of F. Marmolejo was given, but in [Marmolejo and Wood, 2008], F. Marmolejo
and R. Wood showed that the extra condition in the thesis is superfluous as well as one of the original
nine coherence conditions. In this paper, they defined a transition between pseudomonads and proved
that the transitions and liftings are essentially the same.
R.F.C. Walters in his doctoral dissertation [Walters, 1970], gave us a no-iteration presentation of a
monad and its algebras and with these ideas of no-iteration F. Marmolejo and R. Wood rewrote the
distributive laws for monads in [Marmolejo and Wood, 2010] and extended the notion of no-iteration
monads and their algebras to higher dimensional categories in [Marmolejo and Wood, 2013].
The natural continuation for these ideas is to give a definition of a no-iteretion transition and a no-
iteration distributive law between pseudomonads and prove that these are essentially the same as the
usual definitions (this is done in my Ph.D. thsesis). In this talk we will cover these definitions and
also the proofs.
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Non-cartesian internalisation and enriched quasi-categories

A. Mertens

Arne Mertens (arne.mertens@uantwerpen.be)
University of Antwerp

Abstract.
The classical nerve functor N : Cat ↪→ SSet characterises categories as simplicial sets satisfying

a unique lifting condition. Relaxing the uniqueness leads to the definition of a quasi-category as a
simplicial set satisfying the weak Kan condition. If one wants to consider enriched quasi-categories,
a natural question to ask is the following: Given a suitable monoidal category (V,⊗, I), what is the
nerve of a V-enriched category? One might expect this to result in a simplicial object in V, but a
quick observation will show that no reasonable functor landing in simplicial objects V Cat→ SV exists
when V is not cartesian monoidal (e.g. when V the category of vector spaces with the tensor product).

In this talk, I will present tensor-simplicial or templicial objects S⊗V as a generalisation of sim-
plicial sets in the non-cartesian context. This is joint work with Wendy Lowen [11], and it fits the
following scheme:

Categories internal to V Categories internal to (V,⊗, I) V-enriched categories

Simplicial objects in V Colax monoidal functors ∆op
f → V Templicial objects in V

≃
if ⊗=× ⊃

NV NV NV

≃
if ⊗=× ⊃

where each NV is a fully faithful right-adjoint generalising N . Categories internal to a (not necessarily
cartesian) monoidal category (V,⊗, I) were introduced by Aguiar in [1]. They recover classical internal
categories when V is cartesian monoidal, and contain V-enriched categories as a subclass. This picture
extends nicely to higher dimensions. Let ∆f ⊆ ∆ be the monoidal category of finite intervals, then
a colax monoidal functor ∆op

f → V may be considered as a “simplicial object internal to (V,⊗, I)”. It
was already observed by Leinster [10] that these precisely recover SV when V is cartesian.

We posit templicial objects as a suitable context to define an enriched variant of Joyal’s quasi-
categories [8]. In particular this is motivated by (noncommutative) algebraic geometry - where the
strictly enriched model of dg-categories play a central role - and algebraic deformation theory [3]. Our
main results are the following, some of which I will outline during the talk:

1. In [11], we identified an analogue of the weak Kan condition for templicial objects. If it is
satisfied we call the templicial object a quasi-category in V, which precisely recovers classical
quasi-categories when V = Set. To express this condition, we make essential use of the necklaces
of [2][6]. In a separate project with Violeta Borges Marques [4], we construct a Reedy structure
on necklaces.

2. Employing necklaces, we construct a general framework for producing enriched variants of other
nerves as well, such as the homotopy-coherent nerve [5], the dg-nerve [13] and the cubical nerve
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[9], all of which land in S⊗V. This moreover allows to obtain explicit descriptions of their
left-adjoints.

3. Let k be a commutative ring. Through the enriched variant of the dg-nerve, we show in [12]
an equivalence of categories between non-negatively graded dg-categories over k and quasi-
categories in k-modules equipped with a certain Frobenius structure.

4. Our current main goal is to construct a model structure on the category of templicial objects
- analogous to Joyal’s model structure on simplicial sets - such that the enriched homotopy
coherent-nerve Nhc

V : SV-Cat → S⊗V becomes a Quillen equivalence. This would establish
quasi-categories in V as a model for SV-enriched ∞-categories in the sense of [7]. Moreover, we
expect templicial objects to be model monoidal, which fails for SV-Cat.

I will outline some results in this direction. For instance, when V = Vect(k), templicial vector
spaces define a category of cofibrant objects with a compatible symmetric monoidal structure.
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Aspects of 2-dimensional Elementary Topos Theory

L. Mesiti

Luca Mesiti (mmlme@leeds.ac.uk)
University of Leeds

Abstract.
We will present the main results of our PhD thesis, that contribute to expand 2-dimensional

elementary topos theory. As elementary topos theory has had an enormous success, with numerous
applications to geometry and logic, we believe it is very fruitful to generalize the theory to dimension 2.
Introduced by Weber in [5], 2-dimensional elementary topos theory is still at its beginning, but with
a high potential of application to stacks, classifying topoi and 2-categorical logic. Lawvere’s idea of
an elementary topos was that of a generalized universe of sets. On this line, an elementary 2-topos is
a generalized universe of categories.

We will focus in particular on the concept of 2-classifier, which was introduced by Weber in [5] and
is the 2-categorical generalization of the notion of subobject classifier. The idea is to classify discrete
opfibrations, that have higher dimensional fibres. And the archetypal example is given by the category
of elements construction, exhibiting Cat as the archetypal elementary 2-topos. So, interestingly, a 2-
classifier can also be thought of as a Grothendieck construction inside a 2-category. We will introduce
a notion of good 2-classifier, that captures well-behaved 2-classifiers and is closer to the point of view
of logic. The idea is to still have as classifier an object of generalized truth values together with the
choice of a verum, as in dimension 1. This is realized by upgrading the classification process from one
regulated by pullbacks (in dimension 1) to one regulated by comma objects (in dimension 2).

We will present a novel technique of reduction of the study of 2-classifiers to dense generators,
developed in our [4]. Dense generators capture the idea of a family of objects that generate all
the other ones via nice colimits; the preeminent example is given by representables in categories of
presheaves. We will show that both the conditions of 2-classifier and what gets classified by a 2-
classifier can be checked just over the objects that form a dense generator. This substantially reduces
the work needed to prove that something is a 2-classifier. For example, applied to the archetypal case
of Cat , it allows us to deduce all the major properties of the category of elements construction from
the trivial observation that everything works well over the singleton category.

We will then apply the theorems of reduction of 2-classifiers to dense generators to produce a good
2-classifier in stacks, classifying all discrete opfibrations with small fibres. This generalizes to dimen-
sion 2 the fundamental result that Grothendieck topoi are elementary topoi. Indeed, Grothendieck
topoi are given by categories of sheaves, and stacks are precisely the 2-categorical generalization of
sheaves. Stacks still capture the idea to glue together compatible local data into a global datum, but
the compatibility conditions are only required up to isomorphism. They are a key object of study
of the modern algebraic geometry, and they have solved numerous problems (e.g. moduli problems)
that were not solvable using ordinary spaces or 1-dimensional sheaves. Thanks to our results, the
2-categories of stacks, i.e. Grothendieck 2-topoi, will be elementary 2-topoi.
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To reach our good 2-classifier in stacks, we will first apply our theorems of reduction of 2-classifiers
to dense generators to produce a good 2-classifier in prestacks (i.e. 2-presheaves). We will achieve
this by using an indexed version of the Grothendieck construction, developed in our joint work with
Caviglia [1]. This gives a pseudonatural equivalence of categories between opfibrations over a fixed base
in the 2-category of 2-copresheaves and 2-copresheaves on the Grothendieck construction of the fixed
base. Our result can be interpreted as the result that every (op)fibrational slice of a Grothendieck
2-topos is a Grothendieck 2-topos. So this generalizes to dimension 2 the so-called fundamental
theorem of elementary topos theory, in the Grothendieck topoi case. Our good 2-classifier in prestacks
involves a 2-dimensional generalization of the concept of sieve, that is a key element of the notion
of Grothendieck topology. We will then restrict our good 2-classifier in prestacks to one in stacks,
via factorization arguments and our theorems of reduction to dense generators. In particular, we will
generalize closedness of a sieve to dimension 2. Our results also solve a problem posed by Hofmann
and Streicher in [2] when attempting to lift Grothendieck universes to sheaves.

The driving idea behind our technique of reduction to dense generators is to express an arbitrary
object as a nice colimit of the dense generators and induce the required data using the universal prop-
erty of the colimit. In order to handle such colimits in our 2-categorical setting, we apply the calculus
of colimits in 2-dimensional slices that we developed in [3]. In particular, our calculus generalizes to
dimension 2 the well-known fact that a colimit in a 1-dimensional slice category is precisely the map
from the colimit of the domains of the diagram that is induced by the universal property. We show
that the appropriate 2-dimensional slice to consider for this is the lax slice, and that the appropriate
2-dimensional colimits to consider are marked conical colimits.
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Eilenberg-Moore Bicategories for Opmonoidal Pseudomonads

A. Miranda

Adrian Miranda (adrian.miranda@manchester.ac.uk)
University of Manchester

Abstract. Given an monad T on a strict monoidal category (V,⊗, I), suitably coherent natural
transformations with components of the form χX,Y : T (X ⊗ Y ) → TX ⊗ TY and ι : TI → I com-
prise a structure known as an opmonoidal monad. In the presence of such structure, the category
of Eilenberg-Moore algebras VT for the underlying monad also inherits a monoidal structure [6, 8].
Similarly, braidings and symmetries also lift to categories of algebras under suitable compatibility con-
ditions. These results follow from two-dimensional monad theory, specifically the theory of Eilenberg-
Moore objects in 2-categories of strict algebras and lax morphisms [4]. Alternatively, they also follow
from the observation that the Eilenberg-Moore construction and products are both limits, and hence
commute with one another, and opmonoidal monads are monoids in the 2-category of monads [10, 11].

In this talk I will discuss how these results extend to the two-dimensional setting. In this setting,
the Eilenberg-Moore construction for pseudomonads is still a limit [3], however the theory of limits
for lax morphisms of algebras for three-dimensional monads is far more complicated and not as well-
developed [9]. Moreover, the appropriate monoidal structures on 2-categories [1] are now monoids in
a non-cartesian monoidal structure, and as such monoidality of the Eilenberg-Moore construction for
pseudomonads needs to be checked directly. Indeed, an important stepping stone is to check that the
Gray-tensor product actually extends to pseudomonads. Once we have done all of this we find that
the 2-category of pseudoalgebras VT [5] inherits a monoidal structure that is slightly weaker than the
original structure on V, with associativity and unit laws holding up to 2-natural isomorphisms which
satisfy the usual monoidal category axioms on the nose. We also describe similar liftings to pseudoal-
gebras for braidings, syllapses and symmetries that are suitably compatible with the pseudomonad
structure.

This talk is based on results in [7]. Motivating applications include two-dimensional linear alge-
bra and bicategorical models of linear logic [2]. This research is supported by EPSRC under grant
EP/V002325/2.
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Finitary semantics and languages of λ-terms

V. Moreau

Vincent Moreau (moreau@irif.fr)
IRIF, Université Paris Cité

Abstract.
This is joint work with Sam van Gool, Paul-André Melliès and Tito Nguyễn.
There is a growing connection between automata theory and the theory of λ-calculus. Indeed, the

Church encoding shows that finite words and ranked trees are simply typed λ-terms. For instance,
words over the alphabet Σ = {a, b} correspond to λ-terms of type

ChurchΣ := (o⇒ o)︸ ︷︷ ︸
a transition

⇒ (o⇒ o)︸ ︷︷ ︸
b transition

⇒ o︸︷︷︸
initial state

⇒ o︸︷︷︸
output state

Moreover, their semantic interpretations in the cartesian closed category FinSet coincides with their
behavior in finite deterministic automata. This semantic observation led Salvati to define the notion
of recognizable language in [7] as any set of λ-terms of a given type A of the form

{M ∈ Λ(A) | JMKQ ∈ F} for some finite set Q and subset F ⊆ JAKQ.

The recognizable languages of type ChurchΣ are then exactly the regular languages of words, seen
through the Church encoding. Moreover, Salvati has shown that, for any type A, languages of λ-
terms of that type assemble into a Boolean algebra. This definition, using finite sets, extends to any
cartesian closed category.

There is another, more syntactic link between automata theory and λ-calculus. A seminal result
by Hillberand and Kanellakis [3] states that a set of finite words is a regular language if and only if
its characteristic function is λ-definable, modulo a type-casting operation sending any M ∈ Λ(A) to
M [B] ∈ Λ(A[B]). This observation is at the heart of the implicit automata program started in [5],
which shows an analogous correspondence between star-free languages and planar λ-terms.

This line of work yields another, more syntactic notion of regular language of λ-terms of type A,
implicit in the work of Hillebrand and Kanellakis. A syntactically regular language of λ-terms of
a given type A is any set of the form

{M ∈ Λ(A) | R M [B] =βη true} for some type B and λ-term R ∈ Λ(A[B]⇒ Bool)

where Bool is the type o⇒ o⇒ o and true is the first projection.
In [4], we show that, for a large class of sufficiently well-behaved cartesian closed categories, the

associated recognizable languages are exactly the syntactically regular ones. More precisely:

Theorem 1 (§7 of [4]). A language of λ-terms of type A is recognizable by a non-thin well-pointed
locally finite cartesian closed category if and only if it is syntactically regular.
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Theorem 1 provides evidence that the notion of recognizable language of λ-terms is robust, and
does not depend on the category of finite sets. Its proof relies on a new construction on cartesian
closed categories called squeezing, which is inspired by normalization by evaluation.

In [2], we have introduced profinite λ-terms, using semantic interpretation in finite sets, which
assemble into a cartesian closed category ProLam. Profinite λ-terms of type ChurchΣ are exactly
the profinite words, and they extend the correspondance coming from Stone duality with regular
languages [6, 1] in the following way:

Theorem 2 (Proposition 3.4 of [2]). The space of profinite λ-terms of type A is the Stone dual of the
Boolean algebra of regular languages of λ-terms of type A.

Dually, the combination of Theorem 1 with Theorem 2 shows that the space of profinite λ-terms,
initially defined in the setting of semantic interpretation in finite sets, does not depent on that con-
struction.
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Toposes as Lex-Presentable Categories
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Abstract.
When learning topos theory, one encounters a bewildering array of exactness conditions — special

interactions between (weighted) colimits and finite limits which obtain in the category of sets, but not
in general categories. These are all of generally the same form, but they differ enough in the details
to challenge the memory. Categories with some of these exactness conditions (regular, coherent,
geometric, exact, lextensive, etc.̃) play an important role in topos theory, and these sorts of categories
correspond to doctrines of geometric logic or type theory.

In their beautiful paper “Lex colimits”, Garner and Lack smooth this story out by showing that
these exactness conditions emerge by co-completing not in the 2-category Cat of categories, but
instead relative to KZ-doctrines on the 2-category Lex of categories with finite limits and finite limit
preserving functors between them. They are therefore able to reframe Giraud’s characterization of
sheaf toposes in the following way: a topos is a lex-cocomplete category which is (locally) presentable.
However, while the notion of lex-cocompletion takes place in Lex, the notion of presentability is the
original notion which takes place in Cat. Can we give a characterization of toposes as lex-presentable
categories taking place fully in Lex?

In their delightful paper “Accessibility and presentability in 2-categories”, Di Liberti and Loregian
define presentability relative to a KZ-context ν : S ↪→ P (a fully faithful inclusion of KZ-doctrines)
on an arbitrary 2-category. When S has a complementary KZ-context D ↪→ P so that the induced
map SD → P is an equivalence (and under a few other minor assumptions), Di Liberti and Loregian
provide a Gabriel-Ulmer duality between petite D-cocomplete objects and S-presentable objects in
this abstract setting.

In this talk, we will apply Di Liberti and Loregian’s theory to the 2-category Lex and the KZ-
doctrine P of free cocompletion, interpreting the results using Garner and Lack’s theory of lex colimits
to see lex-κ-presentable categories as κ-coherent toposes. We’ll begin by defining a notion of weighted
colimit relative to a KZ-doctrine, which will bring Di Liberti and Loregian’s abstract setting closer
to Garner and Lack’s formulation of lex cocompletion using weighted colimits. This will also allow us
to describe taking lex colimits “one-by-one” and not just the operation of lex-cocompletion under a
class. We will then discuss the conditions under which two classes of weights S and D (to equivocate
between the classes and their free cocompletion KZ-doctrines, for the moment) are complementary
and satisfy the assumptions necessary to apply Di Liberti and Loregian’s Gabriel-Ulmer duality to
produce a duality between D-theories and S-presentable toposes.

In the proof of their Theorem 6.4, Garner and Lack define a sub-canonical topology jD on D-
cocomplete categories C for which the Yoneda embedding y : C → Sh(C, jD) is D-cocontinuous. We
will say that S and D are complementary classes of weights when (1) any colimit may be expressed
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as an S-weighted colimit of D-weighted colimits and (2) a S-weighted colimit (in presheaves) of jD-
sheaves is still a jD-sheaf. We’ll see that complementary classes of colimits satisfy Di Liberti and
Loregian’s Assumptions 3.14 and therefore admit a Gabriel-Ulmer duality.

We’ll conclude by observing that κ-filtered colimits (S) are complementary to κ-small colimits (D),
so that Di Liberti-Loregian’s Gabriel-Ulmer duality gives us the familiar dual equivalence between
κ-exact categories (κ-complete pretoposes)1 with lex κ-cocontinuous functors between them and κ-
coherent toposes with relatively κ-tidy geometric morphisms between them.23
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1This is true for κ ≥ ω; for κ = 1, D is the identity and S = P is free cocompletion and the duality is between small
lex categories and free toposes.

2I believe that this duality between pretoposes and coherent toposes was first observed by Makkai, but I could not
find a reference.

3We note that this Gabriel-Ulmer duality differs slightly from that of [3] which begins with ordinary Gabriel-Ulmer
duality and carves it down to toposes. They establish a duality with proto-toposes rather than pretoposes.
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Double categories of relations relative to factorization systems

H. Nasu

Hayato Nasu (hnasu@kurims.kyoto-u.ac.jp)
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Keisuke Hoshino (hoshinok@kurims.kyoto-u.ac.jp)
Research Institute for Mathematical Sciences, Kyoto University

Abstract.
Relations and spans in a category have been studied in the context of double categories. The

recent work [1] investigated a characterization of the double category of spans in a finitely complete
category, and later in [4], the double category of relations in a regular category was characterized. In
this talk, we will present a generalization of these results by introducing double categories of relations
relative to stable orthogonal factorization systems.
Characterization of double categories of relations. Our presentation will be based on the notion
of relations relative to a factorization system (E,M) on a category C, or M-relations, which are defined
as spans jointly belonging to the right class M. Taking arrows as tight arrows (vertical arrows) and
M-relations as loose arrows (horizontal arrows), we obtain the double category of M-relations. For a
double category D with a terminal object, we can define a class Fib(D) of tight arrows called fibrations,
which in the case of the double category of profunctors, are precisely the discrete fibrations. We will
explain the conditions on a double category D under which the class of fibrations Fib(D) becomes the
right class of a stable orthogonal factorization system (E,M) on the category of tight arrows, and the
double category D is equivalent to the double category of M-relations.
Layering classes of factorization systems via double categorical properties. We will also
discuss some important properties of factorization systems that are reflected in the double categorical
viewpoint. Our characterization theorem translates properties of factorization systems into properties
of double categories, and vice versa, as shown in Table 1. The property of unit-pureness on double
categories will be explored, which is the counterpart of the property of a factorization system having the
left class included in the class of epimorphisms. By the correspondence, we reprove the characterization
of the double category of spans and that of relations in a regular category from the unified viewpoint,
providing a rationale that some conditions, such as unit-pureness and local posetality, are essential in
the original proofs.
Cauchy condition on the double category of M-relations. Another property of double categories
we will discuss is the Cauchy condition. A category is Cauchy complete if any left adjoint profunctor
from (or into, depending on the convention) it is representable. This leads to the definition of Cauchy
double categories ([5]) that all loose adjoints in it are representable by tight arrows. We will show
that in a unit-pure double category of M-relations, left adjoint loose arrows are “ana-tight-arrows”,
meaning that they are of the form

A B Cm f
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where m is a monomorphism belonging to the left class E of the factorization system. It brings us
to the characterization of unit-pure Cauchy double categories of relations as those whose right class
M of the corresponding factorization system includes all monomorphisms. As previously noted in [6],
the Cauchy condition is the categorical formulation of the unique-choice principle.

SOFSs on finitely complete categories Double categories of relations (DCRs)

SOFS

left-proper SOFS right-proper SOFS

anti-right-proper SOFS proper SOFS

regular SOFS(Iso,Mor)

DCR

unit-pure DCR locally preordered DCR

unit-pure Cauchy DCR locally posetal DCR

DCR on regular categoriesDouble category of spans

Table 1: Correspondence between classes of stable orthogonal factorization systems and double cate-
gories of relations.
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Coalgebraic enrichment of categorical W-types
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Abstract.
In both the traditions of functional programming and categorical logic, one takes the perspective

that most data types should be obtained as initial algebras of polynomial endofunctors. For instance,
the natural numbers are obtained as the initial algebra of the endofunctor X 7→ X +1, assuming that
the category in question (often the category of sets) has a terminal object 1 and a coproduct +. Much
theory has been developed around this approach, which culminates in the notion of W-types [2, 3].

In another tradition, that of categorical algebra, algebras (in the traditional sense) over a field
k are studied. It has been long understood (going back at least to Wraith and Sweedler, according
to [1]) that the category of k-algebras is naturally enriched over the category of k-coalgebras, a fact
which has admitted generalization to several other settings (e.g. [1, 5]). Here, we generalize those
classic results to the setting of an endofunctor on a category, and in particular those endofunctors
that are considered in the theory of W-types.

That is to say, this work is the beginning of a development of an analogue of the theory of W-types –
not based on the notion of initial objects in a category of algebras, but rather on a generalized notion of
initial object in a coalgebra enriched category of algebras. The hom-coalgebras of our enriched category
carry more information than the hom-sets in the unenriched category that is usually considered in
the theory of W-types. We are then able to generalize the notion of initial algebra, taking inspiration
from the theory of weighted limits, which is more expressive, and thus can be used to specify more
objects than the usual notion of initial algebra. Because of our move to the enriched setting, then, we
have better control than in the unenriched setting, and we are able to specify more data types than
just those which are captured by the theory of W-types.

Our main theorem is the following.

Theorem. Let (C,⊗, I,C(−,−)) be a locally presentable symmetric monoidal closed category. Let
F : C→ C be an accessible lax symmetric monoidal endofunctor. Then the category AlgF of F -algebras
is enriched, tensored, and powered over the symmetric monoidal category CoAlgF of F -coalgebras.

We show that many endofunctors of interest in the theory of W-types satisfy these hypotheses.
For instance, Set is a locally presentable symmetric monoidal closed category. The following functors
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on a locally presentable symmetric monoidal closed category satisfy the hypotheses: the identity
functor, any constant functor at a commutative monoid, the coproduct of two functors that satisfy
the hypothesis, and the product two functors that satisfy the hypotheses.

In particular, the functor X 7→ X + 1 on Set satisfies the hypotheses, and we work out very
explicitly what the enrichment (and tensoring and cotensoring) tells in this situation. In this concrete
case, we see that the enrichment encodes a notion of partial algebra homomorphism, whereas the usual
category of algebras encodes the notion of total algebra homomorphism.

We then observe that there is an implicit parameter in the notion of initial algebra which we may
now vary. One might think of an initial object as a certain colimit, but in reality, an initial object in a
category C is usually (equivalently) defined as an object I with the property that hom(I,X) = {∗} for
every X ∈ C. That is, I is the vertex of a cone over the identity functor on C with the special property
that each leg of the cone (at an object X ∈ C) is the only morphism of hom(I,X). The reader might
know that as such, an initial object can always be defined as the limit of the identity functor on C.
Now that we are in the enriched setting, however, the appropriate notion of limit becomes that of
weighted limit in which we are able ask not just that hom(I,X) = {∗} but that hom(I,X) = W for
any object W . Thus, we make the following definition.

Definition. Consider a monoidal category (C,⊗, I,C(−,−)) and endofunctor F : C → C satisfying
the hypotheses of the above theorem.

For W ∈ CoAlgF , we define the W -initial algebra to be the limit of the identity functor on AlgF
(viewed as the enriched categories described in the above theorem) weighted by the constant functor
AlgF → CoAlgF at W .

With this, we are able to obtain algebras that represent, for instance in the example of the functor
X 7→ X + 1, partial induction.

Our hope is that all of this extra structure discovered in the quite classical categorical semantics
of functional programming languages can be used to augment them.

This talk reports on [4] and further work in progress.
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On a (terminally connected, pro-etale) factorization system
for geometric morphisms

A. Osmond
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Abstract.
A classical result of topos theory states that any locally connected geometric morphism f : F → E

factorizes uniquely as a connected geometric morphism followed by an etale geometric morphism,
where the etale part is presented by the essential image f!(1F ) of the terminal object – morally, the
object of connected components of the image of f . Such a factorization still makes sense for the
wider class of essential geometric morphisms, though the left part of this factorization is no longer
connected; however it still is terminally connected.

Terminally connected geometric morphisms are in some sense those which are only connected
“from the point of view of the terminal object”. In the essential world, this condition (as it was first
introduced in [1]) says that the essential image preserves the terminal object; but a reformulation of
this condition, which makes sense for arbitrary geometric morphisms, is that there exists a natural
isomorphism F [1F , f∗(−)] ≃ E [1E ,−], or in words, that the inverse image uniquely lifts global ele-
ments. Terminally connected geometric morphisms have some interesting stability properties along
Beck-Chevalley squares or also left to bicomma squares (though not along bipullback); moreover one
can show that they are exactly those that are left orthogonal to etale geometric morphisms, which
suggests they form the left class of a factorization system for all geometric morphisms.

This requires first to identify a correct generalization of etale morphisms on the right. Indeed, in full
generality a geometric morphism may lack an essential image part displaying connected components;
yet its inverse image part, as a lex functor, nevertheless possesses a left pro-adjoint, that is, a relative
left adjoint along its free completion under cofiltered limits. In some sense, though the connected
components of an arbitrary geometric morphism may not be indexed by a discrete set internal to
the codomain topos, they will nevertheless form a pro-discrete internal locale. This suggests that a
correct replacement of etale morphisms could be provided by those that are cofiltered limits of etale
geometric morphisms, a.k.a pro-etale geometric morphisms.

Factorizing a geometric morphism f : F → E through the etale geometric morphism E/E → E at
a given object E of E amounts to providing a global element a : 1F → f∗E; similarly factorizations
through a pro-etale geometric morphism correspond to cofiltered diagrams in the category of elements
1F ↓ f∗. In particular there is a best such factorization through the pro-etale indexed by the cofiltered
category of all global elements of the inverse image part; though this category is large, this cofiltered
limit is always well-defined for 1F ↓ f∗ can be shown to admits a small initial subcategory thanks to
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an accessibility argument. In particular any pro-etale geometric morphism can be reindexed by the
category of elements of its own inverse image, which provides a canonical presentation.

If now one factorizes a geometric morphism through the pro-etale morphism indexed by all the
possible global elements of the inverse image

F E

bilim
(E,a)∈1F↓f∗

E/E

f

tf pf

the residual left part tf is then always terminally connected, for in some sense all global elements are
displayed in a faithful way in the cofiltered limit, a fact that can be proven concretely thanks to a
formula presenting the bilimit topos as the sheaf topos over the pseudocolimits of etale sites. This
begets an orthogonal (terminally connected, pro-etale) factorization for all geometric morphisms. A
peculiar manifestation of this factorization was already known since [2] as the Grothendieck-Verdier
localization at a point of a topos, the germ at this point.

A remarkable property of this factorization is that it allows for a canonical factorizations of lax
2-cells. In general 2-dimensional factorization systems do not come with a canonical way to re-
late the factorizations of two 1-cells related by a 2-cell; equivalently, the orthogonality condition for
(pseudo)squares does not extend to either lax or oplax squares. But in this very case, it happens to be
so: terminally connected morphisms enjoy a special lax orthogonality condition relative to pro-etale,
which comes also with special cocomma stability property and factorization of 2-cells. This property
is somewhat reminiscent of the comprehensive factorization (initial, discrete opfibrations) on Cat and
we will see this is not a coincidence.

This talk will describe properties of terminally connected and pro-etale geometric morphisms, and
give a throughout proof of the existence of their associated factorization. We will also give a more
intrinsic characterization of pro-etale geometric morphisms as those whose inverse image generates
the domain topos through fibers of global elements. We will also give a closely related factorization
for locales morphisms and discuss their behavior along the localic reflection. We also discuss some
syntax-semantics aspects and the relation with another factorization, the (focalisation, terminally
connected) in Lex that is implicitly involved in Gabriel-Ulmer duality. We finally discuss the relation
with another possible generalization of the (connected, etale) factorization, the (connected, algebraic)
factorization identified in [3].
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When limits are limits:
Topological enrichment with an application to probability
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Abstract.
Sequential limits and colimits are often used, intuitively, to “approximate spaces” from below or

from above. For example, the diagram in Set formed by finite sets and inclusion maps

{0} {0, 1} {0, 1, 2} {0, 1, 2, 3} . . .

has as colimit the set of natural numbers N. The same is true more generally for filtered colimits and
cofiltered limits. These examples are probably the motivation for the name “limit”, by analogy with
topological limits, which also “approximate” things, usually numbers or points in a space.

When we have a filtered or cofiltered diagram of subobjects (Aλ)λ∈Λ of a given object X and
inclusion maps, the cofiltered limit gives the infimum (“intersection”) of subspaces, and the filtered
colimit gives the supremum (“union”). Whenever these subspaces are retracts (ι : A→ X,π : X → A),
they give rise to idempotent morphisms e = ι ◦ π : X → X, and if the category is Cauchy-complete,
every idempotent arises in this way.

Using the canonical closed monoidal structure of Top, one can consider topologically enriched
categories. In such an enriched category C, one can look if whenever a net of retracts Aλ ⊆ X tends
to a retract A as a limit (= infimum) or colimit (= supremum), the corresponding idempotents eλ
tend to e topologically, in the hom-space C(X,X). We call these properties, which may hold or fail
depending on C, the upward and downward Levi properties, respectively for suprema and infima, in
analogy with Beppo Levi’s theorem, which says that every bounded monotone real sequence converges
to its supremum.

An example of topologically enriched category where these properties hold is the category of Hilbert
spaces and short maps [4, 5]. In this case, every (split) idempotent is the projection onto a closed
subspace. Cofiltered limits of subspaces and inclusions give exactly intersections, and filtered colimits
give closures of unions. A net of projectors (eλ) onto subspaces Aλ tends topologically to a projector
e if and only if the Aλ tend, as limit or colimit, to the subspace A splitting the idempotent e.

Another such category arises in probability theory, the category of standard Borel probability
spaces and couplings between them [2]. Retracts, in this category, are sub-sigma-algebras up to
almost sure equality. The upward and downward Levi properties hold, and give exactly convergence
in mean for martingales and inverse martingales, cornerstone results of probability theory, which now
have a categorical formalization and proof.
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Abstract.
Crossed modules are algebraic models of homotopy 2-types. By definition, a crossed module G∗ is

a group homomorphism ∂ : G1 → G0 together with an action of G0 on G1 satisfying some properties.
The most important invariants of the crossed module G∗ are the group π0(G∗) = Coker(∂) and the
π0(G∗)-module π1(G∗) = Ker(∂).

One of the main results of this paper is to show that any crossed module ∂ : G1 → G0 fits in a
commutative diagram

G1

id

��

δ // Z0(G∗)

z0

��
G1

∂ // G0

where the top horizontal G1
δ−→ Z0(G∗) and right vertical Z0(G∗)

z0−→ G0 arrows have again crossed
module structures. In fact, the first one is even a braided crossed module, which we call the centre of
the crossed module ∂ : G1 → G0 and denote by Z∗(G∗).

We show that the braided monoidal category corresponding to the braided crossed module Z∗(G∗)
is isomorphic to the Drinfeld centre of the monoidal category corresponding to G∗.

Our definition of Z0(G∗) is based on certain crossed homomorphisms G0 → G1 and has some
advantage compared to one based on monoidal categories. Namely, the description of Z∗(G∗) in terms
of crossed homomorphisms makes it easy to relate the centre of a crossed module to group cohomology.
The essential invariants of Z0(G∗) are closely related to low dimensional group cohomology. In fact,
one has an isomorphism of groups π1(Z∗(G∗)) ∼= H0(π0(G∗), π1(G∗)) and the group π0(Z∗(G∗)) fits
in an exact sequence

0→ H1(π0(G0), π1(G∗))→ π0(Z∗(G∗))→ Zπ1(G∗)(π0(G∗))→ H2(G0, π1(G∗)),

where Zπ1(G∗)(π0(G∗)) is the subgroup of the centre of the group π0(G∗) consisting of those elements
which act trivially on π1(G∗).

It should be pointed out that in the 80’s Norrie also introduced the notion of a centre of a crossed
module, but our notion differs from hers. Our centre can be shown to be a homotopy invariant, unlike
hers.

I’ll also briefly discuss a connection between this definition and the Gottlieb group of the classifying
space of the crossed module.
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The category of strong homotopy Lie Rinehart pairs

D. Pistalo

Damjan Pistalo (damjan.pistalo@uni.lu)
University of Luxembourg

Abstract.
The first example of a strong homotopy Lie algebroid was the BV-BRST complex. In modern

language, it appears when homotopy transfer is applied to a resolution of a Lie Rinehart pair by
a semi-free dgc algebra and a graded projective dg module. However, a homotopy theory in which
this phenomena embeds does not yet exist: in the current homotopical algebra for Lie Rinehart pairs
developed by J. Nuiten in [1], the base is fixed, hence the formalism does not address its semi-free
resolution. Defining weak equivalences of strong homotopy Lie Rinehart pairs (A,M) → (B,N) as
∞-comorphisms in which maps B → A and M → A⊗B N are both quasi-isomorphisms, we show that
the full subcategory of pairs (A,M) with A a semi-free dgc algebra and M a cofibrant A-module is a
category of fibrant objects [2]. Apart from the above historical application, the formalism is expected
to provide the correct notion of a cotangent complex of a general Lie Rinehart pair, enabling the study
of shifted symplectic structures (introduced by Pym and Safranov for Lie algebroids over a smooth
base [3]), derived Lagrangian intersections etc.

References
[1] J. Nuiten, Homotopical algebra for Lie algebroids, Appl. Categ. Struct., Vol. 27, 493–534, (2019)

[2] D. Pistalo, The category of strong homotopy Lie Rinehart pairs, In preparation
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The dichotomy between enriched and internal categorical
structures

R. Prezado

Rui Prezado (ruiprezado@gmail.com)
Universidade de Coimbra

Fernando Lucatelli Nunes (f.lucatellinunes@uu.nl)
Utrecht University

Abstract.
We revisit the dichotomy between enriched and internal categories in a base category V. By

describing these objects as monads internal to certain proarrow equipments, we construct a change-
of-base adjunction between the category of enriched V-categories and the category of internal V-
categories, provided V satisfies suitable conditions. This perspective allows us to cast enriched V-
categories as internal V-categories whose object-of-objects is discrete, which finds applications in the
study of the descent theory for V-functors, as shown in [3, Theorem 9.11].

Motivated by the study of the descent theory of functors between (T,V)-categories [1], the goal of
[4] is to extend these techniques to the setting of generalized multicategories [2]. Using the above di-
chotomy as our guiding principle, we study the notion of change-of-base for a notion of lax algebras for
monads in a suitable 2-category of proarrow equipments. Given suitable conditions on the category V
and the monad T , we obtain an analogous adjunction between enriched and internal (T,V)-categories,
which we use to describe effective descent functors of (T,V)-categories.

References
[CT03] M. M. Clementino and W. Tholen. Metric, topology and multicategory—a common ap-

proach. J. Pure Appl. Algebra, 179(1-2):13–47, 2003.
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The arrows between double category sites for
Grothendieck topoi

D. Pronk

Darien DeWolf (ddewolf@stfx.ca)
St Francis Xavier University

Dorette Pronk (pronkd@dal.ca)
Dalhousie University

Julia Ramos González (julia.ramos@uclouvain.be)
UC Louvain

Abstract In [3] Ehresmann sites are introduced as a way to represent étendues by sites where the
underlying categories are ordered groupoids. This result was proved through a correspondence between
Ehresmann sites and left cancellative categories (which represent étendues, [2]). In [1], the notion of
ordered groupoid was reinterpreted as a special type of double category: an internal groupoid in the
category of posets, with the additional property that the source map from the groupoid of arrows to
the groupoid of objects is a discrete fibration. The Ehresmann topology is defined on the vertical
arrows but the horizontal arrows contribute to the conditions the covering families need to satisfy.
This reinterpretation of Ehresmann sites gives rise to a 2-category of Ehresmann sites such that the
correspondence between left cancellative sites and Ehresmann sites given in [3] becomes part of:

• a 2-adjunction between the 2-category of left cancellative categories and the 2-category of ordered
groupoids;

• a biequivalence between the 2-category of left cancellative categories and the 2-category of
ordered groupoids where each connected component of the vertical category has a maximal
object;

• a biequivalence between the 2-category of left cancellative Grothendieck sites and the 2-category
of Ehresmann sites.

This last equivalence is obtained by characterizing the functors between Ehresmann sites that cor-
respond to cover-preserving, covering-flat functors between Grothendieck sites and restricting the
previous equivalence.

In our current work we introduce generalized Ehresmann sites that represent arbitrary Grothendieck
topoi. Julia Ramos González will introduce the definition of generalized Ehresmann site in her talk
and describe the type of Grothendieck sites we use to obtain an equivalence between the 2-categories
of sites. The Grothendieck sites come with a left quadrable orthogonal factorization system where the
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left class of arrows are covering in the Grothendieck topology and the right arrows are monic (we do
not require the left class to contain all coverings and neither the right class to contain all monics).

I will present the generalization of the 2-adjunction just listed for left cancellative categories and
Ehresmann sites to a 2-adjunction between the 2-category of categories with an orthogonal factoriza-
tion system where the right class contains only monic arrows and the 2-category of ordered categories
(double categories where the vertical structure is posetal and the domain functor is a discrete fibra-
tion). This 2-adjunction restricts to a biequivalence when we restrict ourselves to ordered categories
where each component of the vertical category has a maximal object. (This result closely resembles
the types of correspondences given in [4] but the way we define the double category from a factoriza-
tion system is different: rather than taking the monic arrows themselves as vertical arrows, we take
the subobjects they define.)

This gives us a good starting point to define the arrows between the generalized Ehresmann sites
described by Julia in her talk: we have a correspondence on objects and we use cover-preserving,
covering-flat arrows that preserve the factorization systems as arrows between the Grothendieck sites.
The latter property assures us that we have corresponding double functors. So our job is now to trans-
late the notions of being cover preserving and covering flat to maps between generalized Ehresmann
sites. It is obvious what it means to be covering preserving, but the notion of covering flatness requires
further work: which finite diagrams for an Ehresmann site should be used to test for covering-flatness?
We need that cones over such finite diagrams for generalized Ehresmann sites correspond in a suitable
fashion to cones for finite diagrams for our chosen Grothendieck sites.

To resolve this issue we show that each finite diagram D : I → (a, Ja) into a Grothendieck site
with a suitable orthogonal factorization system factors through an indexing category Ĩ with a strict
factorization system so that the induced diagram is a functor of categories with factorization systems
and such that cones for the first extend uniquely to cones for the second. The first correspondence
in [4], for strict factorization systems, gives then the corresponding indexing double category, that
gives us a finite diagram in the corresponding generalized Ehresmann site. This construction allows us
to define covering flatness for maps between generalized Ehresmann sites in terms of finite diagrams
indexed by finite double categories where the domain functor is a discrete fibration.

We now obtain a 2-category of generalized Ehresmann sites and covering-preserving covering-flat
double functors (and Λ-transformations that form a straight generalization of those introduced in [1]).
This 2-category is biequivalent to the 2-category of our chosen Grothendieck sites.

Finally, Comparison Lemma maps between our Grothendieck sites satisfy the conditions to form
a bicategory of fractions. This allows us to obtain a class of Comparison Lemma maps between
generalized Ehresmann sites so that Grothendieck topoi form the bicategory of fractions for generalized
Ehresmann sites with respect to these morphisms.
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Double categorical presentations of Grothendieck topoi

J. Ramos González

Darien DeWolf (ddewolf@stfx.ca)
St Francis Xavier University

Dorette Pronk (pronkd@dal.ca)
Dalhousie University

Julia Ramos González (julia.ramos@uclouvain.be)
UCLouvain

Abstract. The orthogonal epi-mono factorization system in a Grothendieck topos together with the
stability under pullbacks of epimorphisms (and monomorphisms) allows to fully encode the canonical
topology on the topos, given by the jointly-epimorphic families, in terms of:

(M) the families of monic arrows that are jointly-epimorphic (i.e. the families of monic arrows that
are covering);

(C) the epimorphic arrows (i.e. the single arrows that are covering);

(S) the stability under pullbacks of epimorphisms (and monomorphisms) along both epimorphisms
and monomorphisms (i.e. single covering arrows and monic arrows satisfy the Ore condition).

On one hand, (M) points us towards the direction of left cancellative sites, i.e. sites where all
morphisms are monic, and their categories of sheaves, the étendues. On the other hand, (C) + (S)
point us towards the sites where all single arrows are covering, the atomic sites, and their categories
of sheaves, the atomic topoi.

In this talk, inspired by this observation, we introduce the notion of covering-mono Grothendieck
site, a small Grothendieck site endowed with an orthogonal factorization system in which the left
class consists of single covering arrows and the right class consists of monomorphisms, together
with suitable Ore conditions. We define covering-mono morphisms of sites to be the covering-flat
covering-preserving morphisms that also preserve the factorization system. We then show that every
Grothendieck topos admits a covering-mono site presentation and that the 2-category of Grothendieck
topoi can be recovered as a bicategory of fractions of the 2-category of covering-mono sites, where one
inverts the covering-mono morphisms that are LC (Lemme de Comparaison) [2]. Every Grothendieck
topos can be seen in this way as an interpolation between an étendue and an atomic topos.

Étendues can also be presented in terms of Ehresmann sites [3], which are ordered groupoids en-
dowed with an Ehresmann topology and that can be envisioned as suitable double categories where the
Ehresmann topology lives in the vertical direction [1]. In the same way that covering-mono sites (pre-
senting Grothendieck topoi) generalize left cancellative sites (presenting étendues), we introduce the
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notion of generalized Ehresmann site (generalizing classical Ehresmann sites in their double categorical
incarnation) and we show that every Grothendieck topos can be presented in terms of a generalized
Ehresmann site. More concretely, we define a generalized Ehresmann site as a category internal in
posets (which we envision as a double category), with suitable horizontal and 2-cellular Ore conditions
and endowed vertically with an Ehresmann topology. The horizontal arrows are now not isomorphisms
in general, as it was the case for the classical Ehresmann sites, but the Ore conditions imposed allow us
to treat them as single covering arrows. In addition, we introduce the appropriate notion of sheaf on a
generalized Ehresmann site, analogous to the notion of sheaf on a classical Ehresmann site. We then
establish a direct connection between covering-mono Grothendieck sites and generalized Ehresmann
sites enhancing the connection between left cancellative sites and classical Ehresmann sites from [3]
and [1]: to each covering-mono Grothendieck site we associate a generalized Ehresmann site and vice
versa, and we show that these associations respect the operation of taking sheaves. This allows us to
conclude that generalized Ehresmann sites provide presentations for Grothendieck topoi, as desired.

We will present the relation between covering-mono Grothendieck sites and generalized Ehresmann
sites exclusively at the level of objects. However, this relation can be understood at the level of
bicategories (as it is the case for left cancellative sites and classical Ehresmann sites, see [3] and [1]).
The relation at the bicategorical level and the recovery of the 2-category of Grothendieck topoi as a
bicategory of fractions of the 2-category of generalized Ehresmann sites by inverting the corresponding
class of LC morphisms of generalized Ehresmann sites will not be treated in this talk, but will be
presented by Dorette Pronk in hers.

While LC morphisms of sites (resp. LC covering-mono morphisms of sites) admit a calculus of
fractions [4] allowing to recover the 2-category of Grothendieck topoi as a bicategory of fractions
of the 2-category of sites (resp. of the 2-category of covering-mono sites), the 2-categories of left
cancellative sites and classical Ehresmann sites are too restrictive in order for the LC morphisms to
admit a calculus of fractions. In the last part of the talk, we identify larger families of presentations
of étendues that solve this issue. More concretely, we identify a subclass of the covering-mono sites,
the torsion-free generated covering-mono sites, enlarging the subclass of left cancellative sites but
still providing presentations of étendues. In parallel, we describe the corresponding subclass of the
generalized Ehresmann sites, which we call the torsion-free generated generalized Ehresmann sites.
We show that the LC morphisms in the class of torsion-free generated covering-mono sites do admit
a calculus of fractions allowing to recover the 2-category of étendues as a bicategory of fractions.
Through the bicategorical relation between covering-mono sites and generalized Ehresmann sites that
Dorette Pronk will present in her talk, it is immediate to obtain the analogous result for the torsion-free
generated generalized Ehresmann sites.
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Modules over invertible 1-cocycles
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Abstract.
Hopf braces are recent mathematical objects introduced by I. Angiono, C. Galindo and L. Ven-

dramin in [1] and obtained through a linearisation process from skew braces, which give rise to non-
degenerate, bijective and not necessarily involutive solutions of the Quantum Yang-Baxter Equation
(see [5]), whose formulation is the following:

(τ ⊗ idV ) ◦ (idV ⊗ τ) ◦ (τ ⊗ idV ) = (idV ⊗ τ) ◦ (τ ⊗ idV ) ◦ (idV ⊗ τ), (QYBE)

where τ : V ⊗ V → V ⊗ V is a linear map and V , a K-vector space. As was proven in [1, Corollary
2.4], cocommutative Hopf braces are also relevant from a physical standpoint because they also induce
solutions of the above-mentioned equation.

On the one hand, a well-known result for Hopf braces is their strong relationship with invertible
1-cocycles due to the fact that both categories are equivalent (see [1, Theorem 1.12] and [4, Theorem
3.2]). These objects are no more than coalgebra isomorphism between Hopf algebras π : H → B,
related to each other through a module-algebra structure, and satisfying a weaker condition than
being algebra morphism.

On the other hand, R. González Rodríguez in [3] introduced the notions of module over a Hopf
brace and Hopf module over a Hopf brace, obtaining a categorical equivalence between the base
braided monoidal category C and the category of Hopf modules over a Hopf brace, also known by the
Fundamental Theorem of Hopf modules for Hopf braces.

Therefore, considering the aforementioned precedents, the aim of this talk is going to be giving a
suitable notion of module over a invertible 1-cocycle in such a way that the categorical equivalence
between Hopf braces and invertible 1-cocycles remains valid between their module categories.
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Lawvere Theories and Symmetric Operads as
Substitution Algebras: Free constructions for Abstract Syntax
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Sanjiv Ranchod (sr2008@cl.cam.ac.uk)
University of Cambridge

Abstract. We are interested in free constructions of Lawvere theories and of symmetric operads from
syntactic structures. These respectively correspond to the syntax of cartesian and symmetric monoidal
second-order theories, and most generally arise from binding signatures. For a direct constructive
approach to these free constructions, it is best to consider Lawvere theories and symmetric operads
as substitution algebras modelling single-variable substitution.

In the cartesian case, one considers the object-classifier topos F = SetF (where F is the category
of finite cardinals and functions) as the ambient category for models. Here, a substitution algebra [4]
consists of a presheaf, X ∈ F , a variable operation ν : 1 → δ(X), and a single-variable substitution
operation σ : δ(X)×X → X satisfying the following four axioms:

1×X X X ×X X δ2(X)× 1 δ2(X)

Σs(X) Σs(X) δ2(X)× δ(X) δΣs(X) δ(X)

σ

π1

upX×id σ

δ(σ)

π1

contid×ν

∼=

π2

ν×id

δΣs(X)×X Σsδ(X)×X ΣsΣs(X) Σs(X)

Σs(X) Xσ

∼= str

δ(σ)×id

Σs(σ)

σ

In the above definition, (δ, up, cont, swap) is a symmetric monad on F , induced by the structure of F,
and Σs(A) = δ(A)×A is a strong endofunctor on F . Substitution algebras are equivalent to Lawvere
theories [4] and provide a finite equational presentation of Lawvere theories over F [5], in contrast to
their countably-sorted presentation as abstract clones.

Furthermore, F is the suitable environment for second-order cartesian theories, conservatively
extending Lawvere theories [1]. Binding signatures account for algebraic operations with variable
binding; they appear, for example, as abstraction in the lambda calculus and quantifiers in predicate
logic [3]. An endofunctor Σ on F constructed using the product, coproduct, and δ may be associated
with each binding signature. We prove that the free Σ-algebra over the presheaf of abstract variables,
Y(1) = F(1,−) : F ↪→ Set, is equipped with a canonical substitution algebra structure which is
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induced by generalised parametrised structural recursion. This structure models the abstract syntax
of the binding signature and is initial in the category of Σ-algebras with compatible substitution
algebra structure.

For symmetric monoidal theories – for which the first-order theories are symmetric operads –
the appropriate ambient category for models is that of species of structures, B = SetB, where B is
the groupoid of finite cardinals [6, 7]. B has an additional monoidal tensor, namely the Day tensor
product, ⊗. This is used, instead of the cartesian product, to model linear pairing. The analogous
δ on B is only a symmetric endofunctor and does not respect linear pairings as in the cartesian
case. Instead, it is a derivative operator, equipped with a Leibniz canonical natural isomorphism,
δ(A)⊗B +A⊗ δ(B)

∼=−→ δ(A⊗B).
An endofunctor on B for a binding signature Σ is constructed using the Day tensor, coproduct,

and the derivative δ. Using the Leibniz isomorphism, we define a derived functor Σ′ : B2 → B together
with a canonical isomorphism δΣ(A) ∼= Σ′(A, δ(A)).

We define a linear substitution algebra (equivalent to that of [2]) as a presheaf Y ∈ B together
with a variable operation v : I → δ(Y ) and a single-variable substitution operation ς : δ(Y )⊗ Y → Y
satisfying the following two axioms:

I ⊗ Y Y

δ(Y )⊗ Y

∼=

v⊗id ς

δΣs(Y )⊗ Y Σ′
s(Y, δ(Y ))⊗ Y Σ′

s(Y, δ(Y )⊗ Y ) Σ′
s(Y, Y )

δ(Y )⊗ Y Y

δ(ς)⊗id

ς

∼= strs Σ′
s(id,ς)

ς+ς

Here, Σs(A) = δ(A) ⊗ A and Σ′
s(A,B) = δ(B) ⊗ A + δ(A) ⊗ B. The category of linear substitution

algebras is equivalent to the category of symmetric operads (and, indeed, the category of simultaneous-
substitution monoids [8]).

We prove that the free Σ-algebra over Y(1) = B(1,−) : B → Set has an induced linear substitu-
tion algebra that is initial in the category of Σ-algebras with compatible linear substitution algebra
structure. The full study of second-order symmetric monoidal theories remains work in progress.
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Abstract.
In [2], Estrada and Virili considered a representation (a functor) A : C −→ Add of a small category

C taking values in Add of small preadditive categories and introduced a concept of modules over such
a representation. A sheaf of OX -modules over a scheme (X,OX) is the prototypical example of a
module over such a representation.

In algebraic geometry, the idea of studying schemes by means of module categories linked with
adjoint pairs given by extension and restriction of scalars is well developed in the literature. In this
talk, we will consider representations of a small category taking values in (co)algebras and build an
algebraic geometry like categorical framework that studies modules, comodules and contramodules
over such representations using adjoint functors. We will discuss the cartesian objects in each of these
categories, which may be viewed as counterparts of quasi-coherent sheaves over a scheme. We will
focus on understanding the generators for these categories and the Grothendieck categories appearing
in these contexts, because the latter may be treated as replacements for noncommutative spaces. This
is a recent joint work [1] with Balodi and Banerjee.
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Cotraces and Inner Product Enrichment of Bicategories

C. Reader

Callum Reader (c.reader@sheffield.ac.uk)
University of Sheffield

Abstract. The worlds of category theory and linear algebra seem to be closely, but informally,
interwoven. On the one hand, many category theoretic contructions have strong analogues in linear
algebra. Most obvious, perhaps, is the similarity between categorical and linear adjoints. But it is
often useful to find other comparisons as well: categorical limits might be compared to Cauchy limits,
or products; profunctors might be compared to matrices; the Yoneda lemma might be compared to
the Riesz representation theorem.

On the other hand, category theory has been proven to be a useful tool in the abstraction of
linear algebraic results. Compact closed categories, dagger categories, scalars and traces in monoidal
categories all provide valuable abstractions that allow us to do away with matrix computation and
work much more intuitively with string diagrams. For the particular case of dagger compact categories
see, for example, work of Doplicher and Roberts [1], Baez and Dolan [2], Abramsky and Coecke [3],
Selinger [4], and Heunen and Kornell [5].

We are interested here in the varied and subtle roles that scalars, traces and inner products play in
the world of bicategories. In particular, trace-like structures are well-studied. Thinking of bicategories
as generalised monoidal categories, Ponto [6] gave the structure and conditions necessary to take the
trace of an endo-2-cell, and this formalism has been used for a number of applications in topology.
Ponto and Shulman [7] later studied the various category theoretic properties of this notion of trace.
Much more recently, Hess and Rasekh [8] related this form of trace to topological Hochschild homology.
Work by Bartlett [9], and Ganter and Kapranov [10], gave the definition of the ‘categorical trace’ or ‘2-
trace’ which is defined by considering the bicategory of 2-Vector spaces. And as far back as 1997, Day
and Street [11] published an account of compact closed bicategories in which they gave the definition
of a cotrace.

Our new work shows that this cotrace has an incredibly rich structure and enjoys a number of
trace-like properties. What’s more, it can be used to define a sort of categorical inner product – defined
analogously to the Frobenius inner product – which gives an enrichment to the whole bicategory. In
the same way that the Frobenius inner product is a scalar that exists ‘between’ two linear maps, this
scalar enrichment replaces every set of 2-cells with a categorical scalar.

This result has several consequences. Firstly, it highlights a canonical enrichment that gives many
well-known bicategories their extra structure. For example, it allows us to replace sets of enriched
natural transformations with their corresponding natural transformation object.

Secondly, it unifies Day and Street’s cotrace with the ‘categorical trace’ as defined by Ganter and
Kapranov and the ‘2-trace’ as defined by Bartlett for 2-Hilbert spaces. It turns out that the 2-trace
is simply the unenriched cotrace.

Thirdly, it provides a theoretical underpinning for Willerton’s [12] observation that the 2-trace
seems to be somehow dual to the usual notion of trace. Willerton pointed out that, if we extend the
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definitions of trace and 2-trace to the context of a bicategory with duals, these two different traces
often appear to give opposing results. For example, in the bicategory of profunctors the trace gives a
coend, but the 2-trace gives an end; in a particular bicategory of bimodules, the trace gives Hochschild
homology, but the 2-trace gives Hochschild cohomology. The problem with this observation was that
the trace is a scalar – that is, a map from the unit object to itself – whereas the 2-trace is a set of
2-cells. It is only after adding appropriate enrichment that this ostensible duality makes sense.

Finally, it is a further step towards formalising the relationship between categorical adjoints and
adjoints of linear maps. Since the enrichment is defined, and behaves, like an inner product, 1-cells
that are adjoint in the category theoretic sense are also adjoint in a linear sense.

In this talk we will explore how the enrichment is defined, the similarities that exist between the
enrichment and the Frobenius inner product, the trace-like properties that this endows the cotrace
with, and the many bicategories for which the trace and cotrace give interesting and dual constructions.
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Adjoint split extensions of categories

Ü. Reimaa

Nelson Martins-Ferreira
Polytechnic Institute of Leiria

Fosco Loregian
Tallinn University of Technology

Graham Manuell
University of Coimbra

Greta Coraglia
University of Milan

Abstract.
Suppose we are given a parameterized monad, meaning a functor B → Mnd(X ) from B to the

category of monads on X . This can be interpreted as a particular kind of action of the category B on
the category X . The data of the functor B → Mnd(X ) can also be given as a functor

B × X → X , (B,X) 7→ B ·X ,

where each endofunctor B · − carries the structure of a monad.
To each monad B · − we can associate its category of algebras, and when we glue these categories

together using the Grothendieck construction, we get the category X ⋊ B, whose objects are triples

(X,B,B ·X ξ−→ X) ,

with X ∈ Ob(X ), B ∈ Ob(B) and ξ a (B · −)-algebra on X. We treat an algebra B · X ξ−→ X as
the data of an action the object B on the object X, so X ⋊ B can be considered as a category of
actions, with the parameterized monad B → Mnd(X ) specifying what it means for B ∈ Ob(B) to act
on X ∈ Ob(X ).

The category X ⋊ B has an associated fibration

p : X ⋊ B → B , (X,B, ξ) 7→ B

and, as long as X and B have initial and terminal objects and the monad 0 · − corresponding to the
initial object 0 ∈ Ob(B) is the identity monad, we can form the diagram

X X ⋊ B Bi p

iR pR

s

⊣

⊣
⊣
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of categories and adjunctions. We will argue that this diagram is an adjoint split extension in a
suitable setting, with the word adjoint indicating that the splitting s of p is left adjoint to p.

In fact, we will treat this diagram as the archetypal adjoint split extension, and describe a theory
of such extensions, where the X ⋊B construction will play the role of the semi-direct product that we
construct from the action B → Mnd(X ). We view these extension in the setting where the morphisms
between categories are adjunctions, meaning we need to specify what exactness means for a sequence

X A B
i p

iR pR

⊣⊣

whose composite is the zero adjunction, meaning the adjunction between the constantly initial and
constantly terminal functors. This exactness turns out to be approximately equivalent to saying that
the full subcategories X and B form a torsion theory in A.

For any adjoint split extension

X A Bi p

iR pR

s

⊣

⊣
⊣

we have a comparison A → X ⋊ B, which, under suitable extra assumptions on the diagram, is an
equivalence. For example, we get A → X ⋊ B when our categories are the opposites of toposes, as
observed in [3], in which case X ⋊ B is just Artin gluing. We can also show that A ≃ X ⋊ B when
we are working with semi-abelian categories, and, for example, [4] can be seen as making use of the
equivalence ccHopfK ≃ LieK ⋊ Group, where ccHopfK is the category of cocommutative Hopf algebras
over a nice field K.

In categorical algebra, one often encounters the functor

♭ : A×A → A , (B,X) 7→ B♭X := ker(X +B
[0,1]−−−→ B)

for a pointed category A with coproducts and pullbacks, and from our point of view this functor is
the action associated to the adjoint split extension of points

A PtA A .i p

iR pR

s=pR

⊣

⊣
⊣

The properties of the comparison PtA → A ⋊A can be used to characterize the properties of A.
For example, conservativity of the comparison can be used to characterize the protomodularity of A,
and being an equivalence means that A is a category with semidirect products in the sense of [2].
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Bigraded path homology
and the magnitude-path spectral sequence

E. Roff

Richard Hepworth (r.hepworth-young@abdn.ac.uk)
University of Aberdeen

Emily Roff (emily.roff@ed.ac.uk)
University of Edinburgh

Abstract. The past two decades have seen a proliferation of homology theories for graphs (directed
and undirected), including discrete and cubical homology, path homology, magnitude homology and
reachability homology. Each of these theories is homotopy-invariant in an appropriate sense and
satisfies some sensible discrete analogue of the Eilenberg–Steenrod axioms. Despite this, they tend to
disagree even on quite primitive classes of graphs. For instance, magnitude homology distinguishes
the directed cycles Zm for every m ≥ 1; path homology sees Z1 and Z2 as ‘contractible’ and all the
rest as ‘circle-like’; and to reachability homology every directed cycle appears contractible.

•

Z1

•• Z2 •

•

•

Z3 •

•

•

•

Z4 •

•
•

•
•

Z5

Thus, the evolving story of the homology of graphs is not a simple retelling of the classical story for
spaces (in which Eilenberg–Steenrod’s axiomatization guarantees a theory that is essentially unique).
This talk, based on [3] and [4], presents a new chapter in the tale.

The diversity of homological viewpoints has motivated a recent drive towards consolidation using
the framework of formal homotopy theory. Results so far have mainly been negative: for various
natural notions of weak equivalence of graphs, it is known that no model structure can exist. But
there has been one positive result: Carranza et al [2] exhibit a cofibration category structure on the
category of directed graphs, for which the weak equivalences are maps inducing isomorphisms on path
homology. One of the interesting features of their work is the choice of cofibrations, whose definition is
reminiscent of the pairs of spaces for which the Mayer–Vietoris theorem holds in magnitude homology.
As it turns out, this is no coincidence. Asao has shown that the two homology theories are closely
related, appearing on consecutive pages in a certain spectral sequence [1].

The talk will describe ongoing work to understand that sequence, now known as the magnitude-path
spectral sequence (or MPSS) of a directed graph. We refer to the underlying filtered chain complex
as the reachability complex ; its homology—the target object of the MPSS—is reachability homology.
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Page 1 of the MPSS is exactly magnitude homology, while page 2 is a natural refinement of path
homology, which lies its horizontal axis; we call this page the bigraded path homology of a directed
graph. The sequence thus encompasses several existing invariants, and clarifies the relationships
between them, while adding infinitely many new ones. The invariance properties of the pages grow
progressively stronger as one passes through the sequence, giving rise to a nested family of weak
equivalence classes of directed graphs. For instance, page r of the MPSS sees the directed m-cycle Zm

as contractible when m is less than r, and distinguishes each of the Zms for m ≥ r.
Concerning the spectral sequence as a whole, our main results are as follows.

Theorems Every page of the MPSS has the following homological properties:

• It satisfies an excision theorem with respect to the cofibrations in [2].
• It satisfies a Künneth theorem with respect to the box product.
• It is a finitary functor on the category of directed graphs (meaning it preserves filtered colimits).

In particular these hold for bigraded path homology, which also satisfies a Mayer–Vietoris theorem.

This allows us to show that the cofibration category structure in [2] admits a natural refinement.

Theorem The category of directed graphs carries a cofibration category structure in which the cofi-
brations are those of [2] and the weak equivalences are maps inducing isomorphisms on bigraded path
homology. This is a strictly finer structure than the one exhibited in [2]: for instance, bigraded path
homology, unlike ordinary path homology, distinguishes the directed m-cycles for every m ≥ 2.

These results have consequences of three sorts. Firstly, they demonstrate the value of bigraded
path homology as a novel invariant of directed graphs, sharing the good properties of ordinary path
homology, but with greater distinguishing power. Thus, in applications where path homology might
be used, it is worth considering the bigraded variant.

Secondly, on a technical front, our methods illustrate a useful principle: that properties of path
homology are frequently (though not always) ‘inherited’ from corresponding properties of magnitude
homology—and that what holds true for either of these will often hold true throughout the MPSS.
Moreover, arguments at the level of the reachability complex tend to be more straightforward than the
rather involved proofs necessitated by the standard construction of path homology. Thus, when trying
to prove statements about path homology, it is worth considering whether they can be approached
via the spectral sequence.

Finally, we hope the MPSS will eventually cast more light on the homotopy theory of directed
graphs. It is tempting to speculate that the cofibration category we describe may belong to a nested
family of structures, one for each page; time permitting, we will sketch this idea at the end of the talk.
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Homotopy Bicategories of Complete 2-fold Segal Spaces

J. Romö

Jack Romö (mmjtr@leeds.ac.uk)
University of Leeds

Abstract.
Across the multitude of definitions for a higher category, a dividing line can be found between

two major camps of model. On one side lives the ‘algebraic’ models, like Bénabou’s bicategories,
tricategories following Gurski and the models of Batanin and Leinster [6, ch. 9], Trimble [3] and
Penon [9]. These models specify composition operations and higher coherence morphisms, such as
associators, all satisfying certain coherence conditions, such as the pentagon condition for bicategories.
On the other end, one finds the ‘non-algebraic’ models, which do not make such specifications and
may instead allow many choices of composite. These include the models of Tamsamani [11] and Paoli
[8], along with quasicategories [4], complete n-fold Segal spaces [1] and more.

The bridges between these models remain somewhat mysterious. Progress has been made in certain
instances, as seen in the work of Tamsamani [11], Lack and Paoli [5], Campbell [2], Moser [7] and
others. Nonetheless, the correspondence remains incomplete; indeed, for instance, there is no fully
verified means in the literature to take a weak ‘algebraic’ homotopy n-category of any known model
of weak (∞, n)-category for general n.

In this talk, I will present a concrete means to explicitly construct homotopy bicategories of non-
algebraic (∞, 2)-categories, in particular Reedy fibrant complete 2-fold Segal spaces. The method,
developed in [10], relies on choosing solutions to certain lifting problems, which determine choices of
horizontal composition operations. Homotopies between such solutions induce associators and unitors,
while coherence conditions are finally induced by higher homotopies between these homotopies. The
methods presented extend neatly to obtaining pseudofunctors from maps between complete 2-fold
Segal spaces as well. I will compare this construction to other ways one may obtain homotopy
bicategories of complete 2-fold Segal spaces elsewhere in the literature, including methods induced by
the work of Campbell [2] and of Moser [7].
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Enriched Grothendieck topologies under change of base.

A. Rosenfield

Ariel Rosenfield (rosenfia@uci.edu)
University of California, Irvine

Abstract.
In the presence of a monoidal adjunction

F ⊣ G : U ⇆ V

between locally finitely presentable Bénabou cosmoi, we examine the behavior of V-Grothendieck
topologies on a V-category C, and that of their constituent covering sieves, under the change of
enriching category

G∗ : V-Cat→ U-Cat

induced by G. In particular, we prove some basic lattice-theoretic properties of the collection of
V-Grothendieck topologies on C, and that when G is faithful and conservative, any V-Grothendieck
topology on C corresponds uniquely to a U-Grothendieck topology on G∗C.
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Ultracompletions

G. Rosolini

Giuseppe Rosolini (rosolini@unige.it)
DIMA, Università di Genova, Italy

Abstract. The notion of ultracategory was introduced by Michael Makkai in [8] for the characteri-
sation of categories of models of pretoposes, an ample extension to (intuitionistic) first order theories
of Stone duality for Boolean algebras, providing a kind of Stone duality for first order theories—aka
coonceptual completeness. Recently, Jacob Lurie refined that notion in [7] producing another ap-
proach to the duality for pretoposes—the two notions of ultracategory appear to be different, though
no separating example has been produced yet. All this suggests that there are already two forms of
duality for first order theories, in line with Esakia’s duality as well as others, see [4, 2, 1].

A excellent, radically new, approach to ultrafilters, ultraproducts, ultraactegories, and pretoposes
can be found in [5] where the author also foresees a possible comparison of the two original notions of
ultracategories in future work.

In this work, we introduce a colax idempotent pseudomonad on an ultracompletion 2-functor
on the 2-category Cat of small categories. Given a (small) category C , write U(C ) for the category
which consists of following data:

Objects are triples (I,U , (ci)i∈I) where U is an ultrafilter on the set I, and (ci)i∈I is an I-indexed
family of objects in C .

An arrow [V, f, (gv)v∈V ]: (I,U , (ci)i∈I) → (J,V, (dj)j∈J) is represented by a triple of a set V ∈ V,
a function f :V → I such that the inverse image of a set in U is a set in V1, and a family
(gv: cf(v) → dv)v∈V of arrows in C . Two representatives (U, f, (gv)v∈V ) and (U ′, f ′, (g′v)v∈V ′)
are equivalent if gv = g′v for all v ∈ V ∩ V ′.

Composition of arrows is given componentwise.

Remark. Let T denote a terminal category. The ultracompletion U(T ) is (equivalent to) the opposite
of the category UF of ultrafilters of [5]. More generally, U(C ) is equivalent to

(
UF Fam(Cop)

)op, where
Fam is the usual coproduct completion of a category.

The assignment C � // U(C ) extends to a 2-functor U:Cat //Cat, which we call ultracompletion .
We briefly introduce the rest of the structure on the ultracompletion functor (write T for a fixed

one-element set): for a fixed category C , the unit functor νC :C // U(C ) takes an object c to the triple
(T, {T}, (c)) consisting of a one-object family. The multiplication functor

U(U(C ))
µC // U(C )

(I,U , (Ji,Vi, (cj)j∈Ji
)i∈I)

� // (
∑

i∈I Ji,
∑

U Vi, (c(i,j))(i,j)∈∑
i∈I Ji

)

1In other words, f−1:℘(I) → ℘(J) maps U ⊆ ℘(I) into V ⊆ ℘(J), see [5].
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which employs the indexed sum of ultrafilters, see [5]. It is easy to see that they provide the data for
a pseudomonad U on Cat . Finally we introduce a natural family of natural transformations

(I,U , ((T, T , (ci)))i∈I)

(I,U , (ci)i∈I)
=

..

�
00

U(C )

U(νC )
//

νU(C)

//
U(U(C ))•λC

OO

(T, T , (I,U , (ci)i∈I))

[I,!,[T,ki,(idci
)]i∈I ]

OO

where ki:T → I is the constant function with value i.
Theorem. The quadruple U := (U, µ, ν, λ) is a colax idempotent pseudomonad on Cat.

The ultracompletion functor can be connected with both notions of ultracategories. For the sake
of clarity, we shall denote by M-Ultcat, the 2-category of ultracategories, ultrafunctors, and natural
ultra-transformations in the sense of Makkai’s [8], and by L-Ultcat, the 2-category of ultracategories,
ultrafunctors, and natural ultra-transformations in the sense of Lurie’s [7].
Proposition. Let C be a category.
(i) The category U(C ) is an ultracategory in the sense of Makkai, and the 2-functor U:Cat //Cat
factors through the forgetful 2-functor M-Ultcat //Cat.
(ii) The category U(C ) is an ultracategory in the sense of Lurie, and the 2-functor U:Cat //Cat
factors through the forgetful 2-functor L-Ultcat //Cat.

Corollary. Each U-pseudoalgebra U(C ) α //C bears a structure of ultracategory in the sense of
Makkai, and a structure of ultracategory in the sense of Lurie, in such ways that each assignment
extends to a faithful 2-functor from U-PsAlg into M-Ultcat and into L-Ultcat, respectively.

Finally, we have a result along the lines of Theorem 4.1 of [8].
Theorem. Let P be a pretopos. The evaluation functor ev:P //U(PreTop(P ,Set),Set) is an
equivalence of categories.

The next steps will consider more closely the relationship between U-pseudoalgebras and ultracat-
egories in the sense of Makkai, the connections with the work of Garner’s in [5], and the abstract part
of duality in line with previous work as in [3, 6, 9].
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Formal category theory via ∞-categorical proarrow
equipments

J. Ruit

Jaco Ruit (j.c.ruit@uu.nl)
Utrecht University

Abstract. The language of Joyal and Lurie’s ∞-categories has become an indispensable tool in
homotopy theory nowadays. However, some homotopical constructions are better phrased using other
flavors of∞-categories. For instance, it turns out that it is more convenient to work with∞-categories
internal to an ∞-topos of equivariant spaces in the field of equivariant homotopy, while it is essential
to work with enriched ∞-categories in other contexts. It would thus be useful to have an overarching
framework that produces theories of these types of generalized ∞-categories.

In this talk, we present an extension of methods from formal or synthetic category theory to the
realm of ∞-categories. The field of formal category theory aims to distill the concepts enabling the
formulation of well-behaved category theories internal to an ambient 2-category, with the prototypical
example being the 2-category of categories. Building upon the foundational work of Street and Walters
[4], Wood [1] developed a notion of proarrow equipments. This is an axiomatization of structure on a
2-category that allows one to define a good internal notion of pointwise Kan extensions, for instance.

By adopting Shulman’s [3] and Verity’s [2] double categorical perspective on these equipments,
we will see that the theory of equipments naturally extends to the ∞-categorical context. An ∞-
categorical equipment gives rise to well-behaved categorical concepts in its underlying (∞, 2)-category
such as Kan extensions, exact squares, and - under good conditions - notions of fibrations and compre-
hensive factorizations. There exist suitable equipments that yield the theory of indexed∞-categories,
more generally,∞-categories internal to an∞-topos, enriched∞-categories, fibered∞-categories and
variants of these. Even more general, equipments that produce internal (∞, n)-category theories, may
be constructed. We would like to highlight a few of these examples.
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A categorical view on signatures for inductive types

G. Saadia

Gabriel Saadia (gabriel.saadia@math.su.se)
Stockholm University

Abstract.
Higher inductive-inductive types form a very general class of inductive types that seems to suffice

to define all higher inductive types considered in the Homotopy Type Theory book [4], including the
Cauchy reals. In [1] Kaposi and Kovács describe a way to specify higher inductive-inductive types
(HIIT) in type theory. Kaposi and Kovács specify HIIT’s using a theory of signatures: a specific type
theory where contexts are signatures that encode a particular HIIT. We can morally see a signature
for an inductive type as the presentation of some algebraic theory, and a theory of signatures as a
class of algebraic theories.

In this talk, we will present a categorical analysis of these theories of signatures. We will first anal-
yse the prototypical example of closed finitary inductive-inductive types, which correspond to finite
presentations of generalized algebraic theories without equations. Looking at the theory of signatures
we recover a strict version of Uemura’s representable map category for the universal exponentiable ar-
row [3]. This motivating case of closed finitary inductive-inductive can then be extended; by enriching
the theory of signatures on one side we get an enhanced notion of representable map category on the
other side.

For example, going from closed signatures to open signatures corresponds to a fibered notion of rep-
resentable map categories. More interestingly from the homotopical point of view, extending the sig-
nature from inductive-inductive to higher inductive-inductive corresponds to taking ∞-representable
map categories [2].

Such a theory of signatures gives a syntactic specification for inductive types, which we can then
interpret in any suitable target type theory. This should allow us to compare the strength of signatures
and give an analysis of decompositions of signatures into basic type formers.

This is partially based on joint work with Evan Cavallo and Peter LeFanu Lumsdaine.
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The derivator associated to a dg-category

C. Sava

Francesco Genovese (francesco.genovese@unimi.it)

Chiara Sava (sava@karlin.mff.cuni.cz)
Charles University (Prague)

Abstract.
Derivators, introduced independently by Grothendieck, Heller, Franke and further developed by

Groth (see [4], [3]), yield a model of higher categories based on the language of 2-categories. A
prederivator is a 2-functor

D : Catop → CAT, I 7→ D(I).

and a derivator is a prederivator with additional properties. Here, we denote by Cat the 2-category
of small categories and by CAT the 2-category of large categories – we also disregard logic and “size”
issues here.

Heuristically, a derivator can be viewed as a collection of “homotopy categories of diagrams”. A
typical example is the derivator associated to an ∞-category C , defined as follows:

DC (I) = h(C I), (0.1)

where C I denotes the ∞-category of functors from (the nerve of) I to C and h(−) denotes the
homotopy category. Notice that, by taking I = e the terminal category, we have D(e) = h(C ). The
homotopy category of C itself does not contain enough information to reconstruct C , but the derivator
DC does, in some sense (see for instance [2]). The properties we require of derivators essentially allow
us to define homotopy Kan extensions and in particular homotopy limits and colimits. This is crucial
in any version of higher category theory.

Higher categories, and hence also derivators, have a wide range of applications. In particular,
they naturally appear in homotopical and homological algebra. If A is a ring, we may investigate
its properties by introducing its derived category D(A). D(A) is defined as the localization of the
category of chain complexes of A-modules along quasi-isomorphisms, namely, morphisms inducing
isomorphisms in cohomology. The derived category D(A) is a triangulated category, which means that
it has an additional structure allowing us to compute some homotopy limits and colimits in the form
of mapping cones. Unfortunately, not all homotopy limits and colimits can be computed inside a
triangulated category, and – even worse – they are not functorial.

What is true is that triangulated categories are almost always homotopy categories of higher
categories; such higher categories, called enhancements, have the additional properties of being stable,
which means that they in some sense behave like abelian categories. We have a theory of stable ∞-
categories and, not surprisingly, a theory of stable derivators [3]. If C is a stable ∞-category, the
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derivator DC (cf. (0.1)) is indeed a stable derivator. The derived category D(A) has a natural stable
∞-categorical enhancement, so it has also a stable derivator enhancement.

One might be content with the above picture, but there is catch. For a triangulated category,
the most natural higher categorical enhancement is not described as a stable ∞-category or a stable
derivator, but as a differential graded (dg-) category. A dg-category is a category enriched in chain
complexes. In particular, if A is a dg-category, we may take its homotopy category H0(A ) just by
taking zeroth cohomology of hom complexes. If A is a ring, we may easily define its derived dg-category
Ddg(A), for which the equivalence H0(Ddg(A)) ∼= D(A) holds. Dg-categories are in fact yet another
model of higher categories, one which is best suited for applications to homological algebra.

Inside a given dg-category A , we can define well behaved homotopy limits and colimits, and
functorial mapping cones. A dg-category having such mapping cones is called pretriangulated. This
is the differential graded version of stability: the homotopy category H0(A ) of a pretriangulated
category A has a natural structure of triangulated category.

Now, we know that we can define a (pre)derivator associated to an∞-category C . If we start from
a pretriangulated dg-category A , we may take its dg-nerve Ndg(A ), which is a stable ∞-category,
and then the associated (pre)derivator; still, in the existing literature there is no direct construction
of a (pre)derivator associated to a dg-category. This work will close this gap. If A is a dg-category,
we define:

DA (I) = H0(RHom(I,A )), (0.2)

where RHom(I,A ) denotes the dg-category of quasi-functors [1] between the (free linear category
generated by) I and A . Quasi-functors are essentially “homotopically coherent functors” between
dg-categories.

Our main result is that the above formula (0.2) yields a stable derivator, assuming that A is
pretriangulated and homotopy complete and cocomplete. To show this, we develop a new theory of
homotopy limits and colimits in dg-categories. We will also discuss some interesting applications to
[5, Theorem 4.2] and to Gorenstein projective modules. In particular, thanks to the Ph.D. thesis of
H.Holm, we know that the dg-category of totally acyclic complexes of projective modules is a dg-
enhancement of the stable category of Gorenstein projective modules. For a small category I and a
suitable ring R with finitely many objects, we can define an algebra RI. We aim to show that the
derivator associated to the dg-category of totally acyclic complexes of projective R-modules, evaluated
in I, is equivalent to the category of totally acyclic complexes of projective RI-modules.
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A 2-categorical model of oriented 1-cobordisms.

A. Sharma

Amit Sharma (asharm24@kent.edu)
Kent State University

André Joyal (joyal.andre@uqam.ca)
UQAM

Abstract.
The compact closed quasi category freely generated by one object is a much bigger object than

the compact closed category generated by one object, in fact the latter is a mere 1-truncation of the
former. Recall that the ∞-category of oriented 1-cobordisms Bord1 is the compact closed quasi-
category freely generated by one object [AF21][H18][Lur09]. Our goal is to construct a symmetric
monoidal bicategorical model of Bord1. Recall that the infinite loop space freely generated by a point
Ω∞Σ∞(S0) is the classifying space of a symmetric monoidal category Q constructed by Quillen in
his proof of the Barrat-Priddy-Quillen theorem [Gra76]. We show that cospans in Q are naturally
the 1-cells of a symmetric monoidal bicategory CosQ [Sta16]. The bicategory CosQ can be enlarged
with the addition of 2-cells, called creation and a destruction operators. We conjecture that the
resulting symmetric monoidal bicategory CCC is a model of the ∞-category Bord1 (in particular,
Bord1(A0, A1) ≃ BCCC(A0, A1) for any pair of finite signed sets (A0, A1)). In support of the conjec-
ture, we show that CCC(∅, ∅) is the symmetric monoidal category freely generated by Connes’s cyclic
category Λ and the space Bord1(∅, ∅) is the E∞-space freely generated by CP∞ (Recall that BΛ =
CP∞ [DHK85]).
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Toposes as standard universes

J. Siqueira

José Siqueira (jvp27@cam.ac.uk)
University of Cambridge

Abstract.
E. Nelson introduced Internal Set Theory (IST) in 1977 [5], in an attempt to make the methods of

nonstandard analysis more accessible to mathematicians (and physicists) not acquainted with Logic,
particularly model theory. His approach was to extend ZFC by adding a new unary ‘standardness’
predicate st(x) and three axiom schemata (chiefly Transfer) to govern the behaviour of this new notion.
This provides a reasonably contained set of rules one can use to make new proofs. The resulting theory
is a conservative extension of ZFC, so that it raises no new foundational issues and can be used to
prove classical results: any theorem of IST that can be stated in the language of ZFC is provable in
ZFC, even if the IST proof cannot be expressed in ZFC.

There were several attempts to categorify nonstandard proof methods (e.g., [4, 7, 8]), but this talk
follows a new perspective which is rather natural and addresses all three schemata from IST instead of
focusing on just one in isolation. The point of view is that the additional axiom schemata of Internal
Set Theory express relationships between hyperdoctrines (some of which are triposes [6]), envisioned
as tools allowing us to abstract away from the ideas of internal formula, internal formula with standard
parameters, and external formula while preserving their logical features. Starting from set theory as
a template also allows us to leverage the well-known connections between topos theory and set theory
[1, 2, 3, 9] — taking the “internal universe” to be an elementary topos with extra structure ought to
be seen as a straight-up generalisation of starting from a model of ZFC with an additional predicate
subject to some axioms.

Following [10], this talk will focus on toposes that closely resemble the set-theoretic models of
IST by admitting a notion of ‘standard element’. We will discuss the structure needed to implement
transfer, standardisation, and idealisation internally to a topos, and sketch the proof that any topos
satisfying the internal axiom of choice occurs as a universe of standard objects and maps [10]. This
development allows one to employ these proof methods in environments such as toposes of G-sets and
Boolean étendues.
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Bicategories of algebras for relative pseudomonads

A. Slattery

Nathanael Arkor (n@arkor.co)
Tallinn University of Technology

Philip Saville (philip.saville@cs.ox.ac.uk)
University of Oxford

Andrew Slattery (mmawsl@leeds.ac.uk)
University of Leeds

Abstract.
Relative pseudomonads, introduced in [1], extend the notion of pseudomonad to non-endofunctors.

We introduce pseudoalgebras for relative pseudomonads (showing that these recover the no-iteration
algebras defined in [2]), define the bicategory of pseudoalgebras associated to a relative pseudomonad
T , and establish its universal property amongst resolutions of T . We show that the Kleisli bicategory
for T (constructed in [1]) embeds into the bicategory of T -pseudoalgebras as the full sub-bicategory
of free T -pseudoalgebras; this provides a general coherence theorem when the codomain of T is a
2-category. As an application, we establish that the pseudoalgebras for the presheaf construction are
the locally-small categories admitting small colimits.
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Lax adjunctions and lax-idempotent pseudomonads

M. Štěpán

Miloslav Štěpán (miloslav.stepan@mail.muni.cz)
Masaryk University

Abstract.

Just as a family of U -universal maps ηA : A → UFA for a functor U gives rise to an adjunction,
a family of maps satisfying certain “relative U -left Kan extension” conditions for a pseudofunctor U
gives rise to a lax adjunction. We begin by presenting a generalization of Marta Bunge’s result [1,
Theorem 4.1] where this has been proven for 2-functors.

We then apply this result to the setting of lax-idempotent pseudomonads where we introduce
a new technique for creating lax adjunctions out of biadjunctions. We give various examples, for
instance we show that there is a canonical lax adjunction between the 2-category of algebras and the
Kleisli 2-category for such pseudomonads. Another application guarantees a certain enriched weak
completeness (in the sense of [3]) of the Kleisli 2-category. This for example applies to the bicategory
PROF of locally small categories and “small” profunctors.

Finally, we show how (the dual of) this technique provides us with lax versions of classical results
from two-dimensional monad theory, as described in [2, Section 5]. For instance, the 2-category of
monoidal categories and lax monoidal functors, while not having many bicolimits, is weakly cocomplete
in the above sense.
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Ordinals as Coalgebras: some missing categorical techniques

P. Taylor

Paul Taylor (ct24@paultaylor.eu)
University of Birmingham (honorary)

Abstract.
Simply working out the characterisation of a standard categorical notion in a specific category

often reproduces the textbook account of an old subject, or guides us in developing a new one.
Here we consider notions of “ordinal”, using the theory of extensional well founded coalgebras, with

the “down-sets” functor D on posets for the covariant powerset P in the original set-based example.
However, recovering the popular notion (a transitive extensional well founded relation) is not the

easy application that we hoped for. It raises categorical questions that are simply stated and could
be widely applicable but seem to be unknown.

Any binary relation (≺) ⊂ X ×X can be expressed as a coalgebra α : X → PX. It is extensional
iff α is mono and well-foundedness can be characterised by a “broken pullback” that I have discussed
at categorical meetings. In our subject everything is up for negotiation: not only the category and
the endofunctor but also the notion of “mono”, which we replace with a factorisation system.

For the down-sets functor, a (well founded) coalgebra is a set with two binary relations (X,≤,≺),
where (≤) is a partial order, (≺) is a (well founded) binary relation and these are compatible,

z ≤ y ≺ x =⇒ z ≺ x and z ≺ y ≤ x =⇒ z ≺ x.

Then f : Y → X is a D-(coalgebra) homomorphism iff

∀yy′ : Y. y′ ≤Y y =⇒ fy′ ≤X fy
∀yy′ : Y. y′ ≺Y y =⇒ fy′ ≺X fy
∀x : X.∀y : Y. x ≺X fy =⇒ ∃y′ : Y.x ≤X fy′ ∧ y′ ≺Y y,

whereas in the Set version we just had x = fy′, which we call a P-homomorphism.

For the “monos”, a categorist unencumbered by the historical baggage of set theory would use
lower sets. This (easily) reproduces the (difficult) theory of plump ordinals in my 1996 JSL paper and
has the universal property (transfinite recursion) with monotone successor that Joyal and Moerdijk
identified in their contemporary Algebraic Set Theory. Plump ordinals grow very fast: ω · 2 does not
exist in the simplest non-classical topos Set→ without Replacement. You might think this situation is
good or bad, but I intend to develop it into a purely categorical understanding of that logical principle.

For the popular notion we try using regular monos or full inclusions to redefine extensionality.
Then (≤) is “set-theoretic inclusion” (⊆) derived from (≺), which must be meta-transitive,

∀w, x, y. (∀z.z ≺ y ⇒ z ≺ x) ∧ (x ≺ w) =⇒ (y ≺ w).
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The familiar one-point successor preserves this and there is a rank operation, i.e. a left adjoint to
the inclusion amongst all well founded coalgebras. However, binary joins are very badly behaved and
I don’t know what transfinite recursion theorem might hold.

For an ordinary transitive (≺), its reflexive closure (⪯) is the appropriate choice for (≤), because
then all D-homomorphisms are actually P-homomorphisms and lower inclusions. Binary joins (but
with respect to (⊆)) are nicely behaved and transfinite recursion holds with inflationary successor.

But in developing the rank functor, we must consider (ordinary) extensionality and transitivity
separately, falling back on symbolic methods and getting little benefit from known categorical theory.

We call a D-coalgebra transitive if ∀xy. y ≺ x =⇒ y ≤ x, or α ≤ ηX .
This fits neatly with (D, η, µ) being a Kock–Zöbelein monad, i.e. with DηX ≤ ηDX .

How can the transitive closure of general coalgebras be expressed 2-categorically?

It should be something like a co-inserter, but that’s not it and, when I asked a senior 2-categorist, he
didn’t know what it was.

DX Df
> DX

X

α

∧

ηX

∧

f
> X

α

∧

≤ ηX

∧

In the general theory, the extensional (“Mostowski”) quotient is given by the fixed point of repeated
factorisation of the structure map using the chosen notions of mono and epi. When the functor
preserves the monos, this is actually just the longest corresponding epi.

However, D does not preserve plain monos, so to find the fixed point we need my notion of “well
founded element”. We call a regular epi homomorphism g : A >> B well projected if it factors
uniquely into every regular epi homomorphism f : A >> E with E extensional:

Df

DA Dg
> DB ......................> DE

∨

A

α

∧

g
>> B

β

∧

..........................> E

ϵ
∧

∧

f
∧∧

How are well projected maps characterised order-theoretically?

So this piece of category theory has not fitted well with the traditional notion, but that could be
the fault of the tradition.

In any case, constructively, the popular notion does not capture the more “combinatorial” ideas
of ordinals used in subjects such as proof theory. That is because the functors P and D still use full
higher order logic. But the reason for using category theory to generalise ideas is that quite different,
maybe more combinatorial, functors could be used instead and would give entirely different results.

Relevant papers and seminar slides are at www.PaulTaylor.EU/ordinals/
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Enriched universal algebra

G. Tendas

Jiří Rosický (rosicky@math.muni.cz)
Masarykova Univerzita

Giacomo Tendas (giacomo.tendas@manchester.ac.uk)
University of Manchester

Abstract.
Universal algebra, introduced by Birkhoff, deals with sets A equipped with functions fA : An → A,

where f is a function symbol of arity n in a certain language (or signature) L. Starting from this, one
builds terms and equations, and studies the classes of algebras satisfying a given set of equations.

A categorical treatment of universal algebra was given by Lawvere through the concept of Lawvere
theory. This was further developed in the context of enriched categories by several authors; including
Lack and Power, Bourke and Garner, and Lucyshin-Wright and Parker. Such generalizations follow
the categorical approach of Lawvere, but do not yet provide a notion of enriched universal algebra
with function symbols, recursively generated terms, and equations. In fact, instances of this have been
developed only in specific situations: notably over posets, metric spaces, and complete partial orders.

In this talk, mostly based on a joint paper with Rosický, we unify this fragmented picture under the
same general theory, providing new useful tools that will allow the development of universal algebra
in other areas of enriched category theory.

⋆

Our starting point is a language L which consists of a set of (X,Y )-ary function symbols, whose
input and output arities are objects of the base of enrichment V. Then we define L-structures and
L-terms; the latter are constructed recursively out of the function symbols of L, the morphisms of
V, and by incorporating the monoidal closed structure of V. Interpretation of terms in L-structures
comes next:

t ∈ (X,Y )-ary term, A ∈ L-structure 7→ tA : AX → AY in V.
And finally, an equational L-theory E is defined as a family of equations {sj = tj}j∈J between terms
of the same arity; models of E are L-structures satisfying the interpreted equations.

If the base category V is locally finitely presentable as a closed category, we can talk about finitary
equational theories just by restricting the input arities to vary among the finitely presentable objects
of V. In the same vein, one can define Φ-ary equational theories for a sound class of weights Φ.

Then, our first result shows that V-categories of models of finitary equational theories can be
equivalently described as V-categories of algebras for finitary enriched monads on V, generalizing the
ordinary results for finitary varieties. In the sound case, the V-categories of models of Φ-ary equational
theories are the V-categories of algebras of Φ-ary enriched monads on V.

Secondly, we determine the simplest set of output arities that are necessary to express models of
equational theories. In particular we will see why in the case of V = Set,Pos,Met, and ω-CPO it
is enough to consider terms with terminal output arity, and we will get hints on how to develop new
applications, including for instance 2-categorical and simplicial universal algebra.
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Cauchy convergence for normed categories

W. Tholen

Maria Manuel Clementino (mmc@mat.uc.pt)
Universidade de Coimbra

Dirk Hofmann (dirk@ua.pt)
Universidade de Aveiro

Walter Tholen (tholen@yorku.ca)
York University, Toronto

Abstract. Building on the notion of normed category as suggested by Lawvere [1], we introduce
notions of Cauchy convergence and cocompletenes for such categories which differ from proposals in
previous works, such as [2]. Key to our approach is to treat them consequentially as categories enriched
in the monoidal-closed category of normed sets, i.e., of sets which come with a norm function. Our
notions largely lead to the anticipated outcomes when considering individual metric spaces or normed
groups as small normed categories (in fact, groupoids), but they can be quite challenging when trying
to establish them for large categories, such as those of semi-normed or normed vector spaces – not
just because norms of vectors need to be allowed to have value ∞ in order to guarantee the existence
of colimits of (sufficiently many) infinite sequences.

The interesting large normed categories typically have objects with some quantitative structure
which, however, gets largely ignored by their morphisms, such as normed vector spaces with all linear
maps. But the object structure is then used to declare norms of morphisms which enable one to identify
meaningful types amongst them, just as the usual operator norm identifies bounded or 1-Lipschitz
operators of vector spaces. Working with a general commutative quantale V, rather than only with
Lawvere’s quantale R+ of real numbers, we will demonstrate that the categorically atypical and, in
fact, questionable structure gap between objects and morphisms is already visible in the underlying
normed category of the enriching category of V-normed sets. To show that this normed category and,
in fact, all presheaf categories over it, are Cauchy cocomplete, we assume the quantale V to satisfy
alternatively a couple of light extra properties which, however, are present in all instances of interest
to us. Of utmost importance to the general theory is the fact that our notion of Cauchy convergence
is subsumed by the notion of weighted colimit of enriched category theory. With this theory and,
in particular, with a result of [3], we are able to prove that all V-normed categories have Cauchy
cocompletions, for V satisfying our alternative light assumptions.

(We emphasize that our notion of Cauchy cocompleteness is not to be confused with the selfdual
idempotent-split property of a category, often referred to as Cauchy completeness. Time permitting,
we will comment on the connection between the two notions. For all details on this and on any other
facts and examples, we must refer to the forthcoming [4].)
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A classifying localic category for locally compact locales

C. Townsend

Christopher Townsend (christopher.townsend@leonardo.com)
Leonardo UK

Abstract. It is reasonably clear how to find a classifying localic groupoid for locally compact locales.
That is, we can find a localic groupoid G such that principal G-bundles over any locale X are equivalent
to locally compact locales in the topos of sheaves, Sh(X). This is like a localic version of having a
classifying topos for geometric theories, but not quite as the morphisms between principal bundles
are all isomorphisms. So really, all we are ‘classifying’ are locally compact locales with isomorphisms
between them, not locale maps in general. This is in contrast to classifying toposes which classify the
models of a geometric theory and their morphisms. Further it seems hard to avoid this problem since,
as is well known, all morphisms between principal bundles are isomorphisms. In this talk I’ll present
a way round the issue by defining morphisms between principal bundles as certain principal bundles
associated with the arrow category naturally arising in the construction of G.

In fact the underlying results are quite general and can be summarised by a nice characterisation
of geometric stacks of categories on any cartesian category C. Here a geometric stack of categories
is just a geometric stack of groupoids (i.e. X 7→ PrinG(X)) but using the new notion of morphism
between principal bundles to define the morphisms of each category of principal bundles PrinG(X).

3 CONTRIBUTED TALKS

17:00 - Tuesday

187 Full Schedule



Operads colored by categories

D. Trnka

Dominik Trnka (trnka@math.cas.cz)
Institute of Mathematics, CAS, Prague

Abstract. Colored operads, also known as symmetric multicategories, have proven to be useful in
various mathematical disciplines, such as algebraic topology, algebraic geometry, homotopy theory, or
mathematical physics.

For a set C, a C-colored operad P consists of objects P (c1 · · · cn; c) of abstract n-ary operations,
whose inputs and output have specific types c1, . . . , cn, c ∈ C, together with associative and unital
composition maps. We consider a generalisation, where the colors form a category; the morphisms
of the coloring category act on inputs and output of the operations, possibly changing their type.
Such generalisation of colored operads originally appeared in [DS03] under the name ‘symmetric
substitudes’, and later independently in [Petersen13, Ward22]. There are applications of category-
colored operads in deformation theory [DSVV24] and in homotopy theory [BW22].

I will present a new definition based on partial compositions, which is suitable for non-unital
version of operads. The idea is to replace the sources of the operad composition

Pn ⊗ Pm
◦i−→ Pn+m

by certain colimits Pn ⊗i Pm, which deal with the categorical coloring. This approach leads us to
realize that:

Result I: Category-colored operads are internal algebras of a certain categorical operad of functors.

In the homotopy theory of algebras, it is standard to encode an algebra as an algebra of an operad.
If this operad is binary quadratic (meaning it is free modulo quadratic relations and generated by
binary operations) and ‘Koszul’, there is an algorithm for finding its minimal cofibrant replacement.
Algebras of this replacement are then homotopy versions of the original algebras [Markl04]. To imitate
this process with operads in place of algebras, it was essential to pass to the category-colored setting,
which resulted in:

Result IIa: There is a quadratic binary non-unital operad, colored by a groupoid of permuta-
tions Σ, whose algebras are non-unital symmetric operads. This directly extends to:

Result IIb: There is a quadratic binary non-unital category-colored operad, whose algebras are
non-unital Markl O-operads for an operadic category O.

Operadic categories were introduced in [BM15] as a unifying framework for various operadic struc-
tures (such as cyclic and modular operads, di–operads, &c.) and their homotopy theory.

The Results can be found in my recent article [T23], on which the talk is based.
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Existential completions, AC-chaotic situations and towers of
toposes

D. Trotta

Davide Trotta (trottadavide92@gmail.com)
University of Pisa

Maria Emilia Maietti (maietti@math.unipd.it)
University of Padova

Abstract. In this talk, we introduce a new hierarchy of toposes obtained by combining the tripos-
to-topos construction [1] with the full existential completion [5, 7]. Then, we compare this new tower
of toposes with the one introduced by Menni in [3, 4], obtained by iterating the ex/lex and reg/lex
completions. Menni proved that, under suitable hypothesis (AC-chaotic situation, weak dependent
products and a generic object), a given lex category C provides a tower of toposes (Creg/lex(n))ex/lex,
and each topos in the hierarchy is a sheaf subtopos (for the canonical topology) of the next one.
For example, when C is the category of partitioned assemblies PAsm(K1), the first step of the tower
of toposes if the effective Eff topos, while the second one, i.e. (PAsm(K1)reg/lex)ex/lex is the topos of
extensional realizability studied by van Oosten in [6]. While when C is the quasi-topos obtained as
coproduct completion H+ of a frame H, then ((H+)reg/lex)ex/lex is equivalent to the topos Set(D

n
+H)op ,

where D+H denotes the frame of non-empty lower subsets of H. Menni conjectured that the hierarchy
of realizability toposes can be presented in tripos-theoretic way, and Hofstra provides a formal answer
to this problem in [2].

In detail, we present the following theorem:

Theorem 1. Let P : Sop → InfSl be a primary doctrine on a topos whose epi splits and such that
the Grothendieck category GP has weak dependent products and a generic object with respect to the
(canonical) AC-chaotic situation on S. Then:

• every full existential completion P ∃(n) : Sop → Hey is a tripos (for n ≥ 1);

• every Grothendieck category GP∃(n) has a (canonical) AC-chaotic situation on S, weak dependent
products, and a generic object;

• we have a new hierarchy of toposes obtanined as tripos-to-topos TP∃(n) , and each topos in this
hierarchy is a sheaf subtopos of the next one for a topology abstracting the ordinary sheafification.

Moreover, (GP )ex/lex ≡ TP∃ and for every n ≥ 1 we have that the topos ((GP )reg/lex(n))ex/lex is a
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reflective subcategory of the topos TP∃(n+1) , graphically:

TP∃ TP∃(2) TP∃(3) TP∃(4) . . .

(GP )ex/lex ((GP )reg/lex)ex/lex ((GP )reg/lex(2))ex/lex ((GP )reg/lex(3))ex/lex . . .

⊣ ⊣ ⊣

⊣ ⊣ ⊣

⊣⊣⊣

First, the proof of the existence of our new tower is achieved through the following result:

Proposition 2. Let P : Sop → Hey be a tripos on a topos whose epi splits. Then the Grothendieck
category GP has a canonical AC-chaotic situation on S, weak dependent products and a generic object.
Hence, its full existential completion is a tripos.

Then, the existence of the adjunctions between our tower of toposes and Menni’s one follows by
combining the universal properties of the completions involved with a new decomposition of the full
existential completion, which allows us to provide a characterization of the regular completion of
Grothendieck categories which generalizes the known equivalence Asm(A) ≡ PAsm(A)reg/lex. In detail:

Proposition 3. The full existential completion of doctrines whose base category is regular can be
decomposed into two steps: by first adding left adjoints along the class of all the regular epi, and then
by adding left adjoints along the class of monos. Moreover, for every primary doctrine P : Cop → InfSl
with C regular category, we have that the category (GP )reg/lex is equivalent to the category GP∃e , i.e.
the Grothendieck category of the doctrine P ∃epi obtained by adding left adjoints along regular epis.

We conclude by presenting relevant examples and applications of our main results, including all
Set-based triposes. Finally, we will discuss the specific towers arising from realizability and localic
triposes.
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Recent progress in the theory of effective Kan fibrations in
simplicial sets

B. van den Berg

Benno van den Berg (B.vandenBerg3@uva.nl)
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Universiteit van Amsterdam

Abstract.
One of the most important steps in the development of homotopy type theory has been the construc-
tion, by Voevodsky, of a model of type theory with the univalence axiom in the category of simplicial
sets [7]. This work builds on the classic Kan-Quillen model structure in simplicial sets.

From the very beginning people have been trying to understand how constructive Voevodsky’s
results are. Besides being of intrinsic interest, it is also relevant for the question whether these results
hold relative to an arbitrary base topos. Perhaps most importantly it also asks whether one can
compute with the univalence axiom, or any other principle that might hold in the simplicial model.

Early on, an obstruction was found by Bezem, Coquand and Parmann [4]. They observed that the
classic result saying that the exponential AB is a Kan complex whenever A and B are, is not provable
constructively. We refer to this as the BCP-obstruction. Since Kan complexes are interpreting the
types in Voevodsky’s model and the exponentials are the obvious way to interpret function spaces,
this blocks a direct constructive interpretation of function types in Voevodsky’s model.

In response most researchers have switched to cubical sets. This does not only involve changing
the shapes, but also involves strengthening the notion of a Kan comples, or a Kan fibration, by adding
uniformity conditions [3, 5]. Indeed, the usual definition of a Kan complex requires the mere existence
of fillers against a class of maps, whether these are horn inclusions or open box inclusions. The
other innovation is to insist that a Kan fibration comes equipped with a system of solutions which
is required to satisfy certain compatibility conditions. It is in this way that one can overcome the
BCP-obstruction in cubical sets.

While this has sometimes been taken to mean that cubical sets are constructively superior, matters
are really not that clear. Indeed, as observed by Gambino and Sattler [6], uniformity conditions can
also be used to overcome the BCP-obstruction in simplicial sets. Indeed, in their paper they define a
notion of a uniform Kan complex, mirroring the cubical definition, and show that if A is a uniform
Kan complex, then so is AB for any simplicial set B.

In a book written with Eric Faber [1], we gave another solution which we call effective Kan
fibrations, using uniformity conditions stronger than those of Gambino and Sattler. In contrast to
Gambino and Sattler’s notion, our definition is local. This means that we can show the existence of
universal effective Kan fibrations, which should allow us to interpret type-theoretic universes. Indeed,
the main results of our book are:

(1) Every effective Kan fibration is a Kan fibration in the usual sense, and in a classical metatheory
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one can show that every Kan fibration can be equipped with the structure of an effective Kan
fibration.

(2) Whenever f and g are effective Kan fibrations, then so is Πf (g), the push forward of g along f .

(3) Being an effective Kan fibration is a local property and hence universal effective Kan fibrations
exist.

The ultimate aim is to develop a constructive proof of the existence of both a model of homotopy
type theory and the Kan-Quillen model structure on simplicial sets using the notion of an effective
Kan fibrations. Unfortunately, this remains work in progress.

In the meantime, the speaker has obtained, often together with (former) MSc students, some
further results and the purpose of this talk is to report on these. In particular, we have shown that:

1. Any simplicial group is effectively Kan ([2], jww with Freek Geerligs).

2. The effective Kan fibrations are cofibrantly generated by a countable double category ([2], jww
with Freek Geerligs). Classically, this means they are the right class in algebraic weak factori-
sation system.

3. Whenever f is an effective Kan fibration, then Wf , the W-type associated to f is an effective
Kan complex (jww with Shinichiro Tanaka).

4. A version of the Joyal-Tierney calculus works for effective Kan fibrations (jww with Eric Faber).

Since we are still working on related issues, we may have more to report in June.
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Associativity of Cosmash Products in Non-associative
Algebras

C. Vienne

Corentin Vienne (corentin.vienne@uclouvain.be)
UCLouvain

Abstract.
The purpose of this talk is to convince you that, for a field K with characteristic zero, the condi-

tion called cosmash associativity characterizes the variety of commutative and associative K-algebras
amongst all varieties of non-associative K-algebras. Since this condition is motivated by Category
Theory, this gives a very abstract way of thinking about commutativity and associativity.

In order to present things in an understandable way, we will first recall the notion of the binary
cosmash product. We see how it naturally leads to a suitable definition of binary commutators by
looking at some classical examples. In the case of commutative associative algebras, it corresponds
to the binary tensor product. We then try to extend these notions to the ternary case, and even to
the n-ary case for some natural number n. From this point, what cosmash associativity means can be
explained essentially without effort. In the end, we discuss the main result and the techniques used
to prove it. If time allows it, we mention new questions which appeared from this project.

Joint work with Ülo Reimaa and Tim Van der Linden.
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Constructing generalized schemes using cone injectivity
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Abstract.
We provide generalizations of two notions of a scheme from algebraic geometry. Both are defined

as certain geometric objects admitting an open cover by “affine schemes”. In the first approach,
affine schemes constitute the image of a spectrum functor valued in a suitable category generalizing
that of locally ringed spaces. The spectrum functor is constructed using cone injectivity and the
construction works quite generally, especially for a locally finitely presentable category A. In this full
generality however, the spectrum functor fails to be fully faithful and we explain reasonable sufficient
conditions under which it is. In the second approach, we develop a generalization of another concept
from algebraic geometry – the functor of points, valued in a certain category of (small) sheaves on
Aop. Finally, assuming the full faithfulness of the spectrum functor, we prove equivalence of the two
resulting notions of schemes. On the way, we prove a useful universal property of the category of small
sheaves.

This is based on a joint work with J. Jurka and T. Perutka, written up in an arxiv preprint [1].
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Formal theory of Rezk completions

K. Wullaert

Kobe Wullaert (K.F.Wullaert@tudelft.nl)
Delft University of Technology

Abstract.
Our purpose is to illuminate and to extend the theory of univalent categories in homotopy type

theory. To this end, we generalize from the bicategory Cat and univalent categories therein to “Cat-
like” 2-categories, equipped with a Yoneda structure, and univalent objects therein. In particular, we
generalize and refine the result that weak equivalences (between univalent categories), are necessarily
isomorphisms (adjoint equivalences). Consequently, we conclude that any fully faithful and (mere)
essentially surjective functor induces an isomorphism between the univalent completions (i.e., the Rezk
completion) of the source and target object.
Univalent category theory. In univalent foundations, every mathematical object comes equipped
with its notion of sameness, and reasoning is invariant under this notion. The univalence axiom
implies that univalent categories are necessarily invariant under weak equivalences. Therefore, the
most useful notion of category is that of univalent category, in univalent foundations. However, not
every classical construction is closed under univalence, such as Kleisli categories constructed via Kleisli
morphisms. That is, the Kleisli category (as before) is not-necessarily univalent, even if the underlying
category is univalent. A process to turn a non-univalent category into a univalent one is provided
in [2] ; it provides a construction of the “free univalent” category, referred to as the Rezk completion.
Concretely, the Rezk completion of a category is constructed as the full subcategory of representable
presheaves. The universal property of the Rezk completion [2] , says precisely that unit of associated
adjunction (given by the inclusion Catuniv ↪→ Cat) is a pointwise weak equivalence. The pointwise
weak equivalences are shown to correspond with the fully faithful and essentially surjective functors.
(the latter are referred to as the weak equivalences of categories.)
Our work. In this abstract, we generalize the results concerning the theory of univalent categories,
weak equivalences and Rezk/univalent completions, see [2, 5]. To achieve this generalization we build
upon an existing theory of (univalent) bicategories [4] . Additionally, we formulate a type theoretic
version of Yoneda structures [1] . This study requires to reason about categories modulo isomor-
phism, instead of equivalence. Hence, we consider those bicategories equipped with an “underlying
precategory”, referred to as 2-categories. We universally characterize the essentially surjective functors
relative to a Yoneda structure, generalizing the proof that the weak equivalences of categories are the
pointwise weak equivalences.
Yoneda structures. From now on, we fix a 2-category K equipped with a Yoneda structure, see
[1] . (Informally, the objects of K are to be interpreted as (V -enriched) 1-categories.) The Yoneda
structure on K assigns to every object X an object P X (its object of presheaves) and a morphism
ょX : X → P X (its Yoneda morphism), see [1] for the universal property of (X, ょX).

The main idea behind a Yoneda structure is that every morphism is uniquely determined by its
action on “generalized objects” and “generalized morphisms” respectively. The idea is made formal by
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the following construction, due to Street and Walters.
Construction. Every precomposition functor K(f, Z) factors through a displayed category over the
source (hom-)category, denoted ExNat(f, Z):

ExNat(f, Z)

K(Y,Z) K(X,Z)

π1

(f ·eZ−)

(f ·−)

Definitions. Let X,Y, Z be objects and f : X → Y a morphism. Then f is essentially surjective
if (f ·eZ) is a weak equivalence of (univalent) categories, for every univalent Z; where an object Z is
univalent if for any f : X → Y , the category ExNat(f, Z) is univalent.
Theorem. Let f : X → Y be a morphism. Assume f is a weak equivalence, i.e., f fully faithful
[1] and essentially surjective. Then, for every univalent Z, the precomposition functor K(f, Z) is an
isomorphism of (hom-)categories. (If f satisfies the latter, f is said to be a “local equivalence”.) The
converse holds if for every object, a weak equivalence into a univalent object is given.
Example. The motivating type of 2-categories are those of the form K := CatV , 2-categories of
V-enriched categories (V-functors, and V-transformations). V is assumed to be strong enough as a
base for enrichment. Furthermore, we require closedness and completeness in order to construct the
Yoneda structure on V.

The theorem means precisely that the “local equivalences” are given by those morphisms which
are fully faithful (intuitively, “inclusions” of hom-categories) and essentially surjective on (a subtype
of) objects. Consequently, the univalent objects and weak equivalences are suitably characterized
internal to K = CatV . Furthermore, the Rezk completion and can be constructed as the (replete)
(eso,ff)-image of its Yoneda morphism, i.e., as a full subcategory of its presheaf category.
Conclusion. In this project, we provide an axiomatic framework generalizing the concrete construc-
tion of [2, 5] to a more abstract (already existing) setting: 2-categories equipped with a Yoneda
structure [1] . We observe that a Yoneda structure on a 2-category provides sufficient structure to
suitably interpret weak equivalences as morphisms which are essentially surjective on objects and fully
faithful. This interpretation is based on (a slight generalization of) Proposition 23 in [1] . The theory
presented in the framework, axiomatizes the structure a 2-category needs to have, in order to suitably
construct, and reason, without worrying about “univalence-requirements”.
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matics, https://homotopytypetheory.org/book, 2013.

[4] A. Benedikt and D. Frumin, M. Maggesi, N. Veltri, N. van der Weide, Niels, Bicategories in
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University Press, 2021.
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A monotone-light factorization for n-categories

J. J. Xarez

João J. Xarez (xarez@ua.pt)
Department of Mathematics, University of Aveiro, Portugal

Abstract.
Starting with a symmetric monoidal adjunction with certain properties, we derive another symmet-

ric monoidal adjunction with the same properties between the respective categories of all V-categories.
If we begin with a reflection of a full replete subcategory, the derived adjunction is also a reflection
of the same kind. Semi-left-exactness (also called admissibility in categorical Galois theory) or the
stronger stable units property is inherited by the derived reflection. Applying these results, we con-
clude that the reflection of the category of all n-categories into the category of n-preorders has stable
units. Then, it is also shown that this reflection determines a monotone-light factorization system on
n-categories, n ≥ 1, and that the light morphisms are precisely the n-functors faithful with respect
to n-cells. In order to achieve such results, it was also shown that n-functors surjective both on ver-
tically composable triples of horizontally composable pairs of n-cells, and on horizontally composable
triples of vertically composable pairs of n-cells, are effective descent morphisms in the category of all
n-categories nCat, n ≥ 1.
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[1] Carboni, A., Janelidze, G., Kelly, G. M., Paré, R. On localization and stabilization for factorization

systems. App. Cat. Struct. 5, (1997) 1–58.

[2] Janelidze, G., Sobral, M., Tholen, W. Beyond Barr Exactness: Effective Descent Morphisms in
Categorical Foundations. Special Topics in Order, Topology, Algebra and Sheaf Theory, Cambridge
University Press, 2004.

[3] Kelly, G. M. Basic Concepts of Enriched Category Theory, Reprints in Theory and Applications
of Categories, No. 10, 2005.

[4] Xarez, J. J. The monotone-light factorization for categories via preorders. Galois theory, Hopf
algebras and semiabelian Categories, 533–541, Fields Inst. Commun., 43, Amer. Math. Soc., Prov-
idence, RI, 2004.

[5] Xarez, J. J. The monotone-light factorization for 2-categories via 2-preorders, Theory Appl. Cat-
egories 38 (2022) 1209–1226.

[6] Xarez, J. J. The monotone-light factorization for n-categories via n-preorders,
https://doi.org/10.48550/arXiv.2310.10475.
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Toposes vs Localic Groupoids:
A unified treatment of covering theorems

E. Yuksel

Errol Yuksel (errol.yuksel@math.su.se)
Stockholm University

Abstract. The idea of toposes as spaces whose points have non-trivial automorphisms is said to
have originated with Grothendieck, and was first made concrete by Joyal–Tierney [4]. They showed
that every Grothendieck topos E admits a localic groupoid L(E) presenting E , in the sense that the
topos of equivariant sheaves on L(E) is equivalent to E . This idea was then revisited by many authors
(Moerdijk [5], Butz–Moerdijk [3], Awodey–Forssell [1]); there are nowadays plenty of variations on this
theme in the literature. These covering theorems, or viewed another way, reconstruction theorems
depend on different assumptions and are rarely directly comparable, but their proofs turn out to follow
a general pattern.

In this talk, we abstract that pattern and thus reduce such a reconstruction theorem to its bare
minimum; we call the minimal data associated to such a theorem its amorphous sheaf. These are very
concrete objects: a locale and a sheaf over it satisfying certain properties. We will explain how to
recover a reconstruction theorem from an amorphous sheaf, recalling the necessary amount of descent
theory along the way.

Due to their tangible nature, amorphous sheaves can readily be studied from a logical point of
view. For instance, we provide a logical recognition criterion for amorphous sheaves; this relies on the
theory of classifying toposes for first-order theories of Butz–Johnstone [2]. Finally, we illustrate the
resulting framework by reviewing a selection of established reconstruction theorems.

This is joint work with Ivan Di Liberti and Peter LeFanu Lumsdaine.

References
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Logic 164.3 (2013), pp. 319–348. doi: 10.1016/j.apal.2012.10.016.
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Algebra 130.3 (1998), pp. 223–235. doi: 10.1016/S0022-4049(97)00107-2.

[4] André Joyal and Myles Tierney. “An extension of the Galois theory of Grothendieck”. In: Mem.
Amer. Math. Soc. 51.309 (1984), pp. vii+71. doi: 10.1090/memo/0309.

[5] Ieke Moerdijk. “The Classifying Topos of a Continuous Groupoid. I”. In: Transactions of the
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Pivotality, twisted centres, and the anti-double of a Hopf
monad

T. Zorman

Sebastian Halbig (sebastian.halbig@uni-marburg.de)
Philipps-Universität Marburg

Tony Zorman (tony.zorman@tu-dresden.de)
TU Dresden

Abstract.
Finite-dimensional Hopf algebras admit a correspondence between so-called pairs in involution,

one-dimensional anti-Yetter–Drinfeld modules, and algebra isomorphisms between the Drinfeld and
anti-Drinfeld double. From the perspective of representation theory, Hopf algebras are in one-to-one
correspondence with rigid monoidal categories. This fact may be “categorified”, passing from Hopf
algebras to Hopf monads as defined by Bruguiéres and Virelizier [1]. Further, as studied by Aguiar
and Chase [2], a Hopf monad may admit a comodule monad over it; this generalises the notion of a
comodule algebra over a Hopf algebra, which representation theoretically expresses itself as a module
category over the (rigid) monoidal base category.

In this talk, we will explore the classical theorem from this perspective, and extend it to co-
module monads over Hopf monads. Hereto we construct the anti-Drinfeld double of a Hopf monad,
which—analogously to the Hopf algebraic case—is a comodule over its double; the latter was stud-
ied in [3]. As it turns out the interplay between double and anti-double characterises when a rigid
monoidal category is pivotal—i.e., the double dualising functor is (isomorphic to) the identity.

This talk is based on [4].

References
[1] A. Bruguières and A. Virelizier, Hopf monads, Adv. Math. 215, No. 2, 2007, 679–733.

[2] M. Aguiar and S. U. Chase, Generalized Hopf modules for bimonads, Theory Appl. Categ., Vol. 27,
2012, 263–326.

[3] A. Bruguiéres and A. Virelizier, Quantum double of Hopf monads and categorical centers,
Trans. Am. Math. Soc. 364, No. 3, 2012, 1225–1279.

[4] S. Halbig and T. Zorman, Pivotality, twisted centres, and the anti-double of a Hopf monad, Theory
Appl. Categ., Vol. 41, 2024, No. 4, 86–149.
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Introduction to Stratified Toposes

C. Zwanziger

Colin Zwanziger (czwanzig@alumni.cmu.edu)
Institute of Philosophy, Czech Academy of Sciences

Abstract.
The notion of (elementary) topos abstracts to the level of categorical algebra several aspects of the

category of sets. However, it is natural to assume the existence in the category of sets of Grothendieck
universes, which is not reflected in the topos axioms.

In remedy of this, various notions of universe in a topos have been introduced. [1]’s axioms are
already quite close to the present approach. The axioms of [5] are stronger than [1]’s, and draw on
previous work on the semantics of the calculus of constructions, e.g. [2, 4]. We introduce a notion of
universe in a topos that somewhat strengthens [5]’s axioms.

In our notion of universe, we will ask for a full logical inclusion of toposes

E ↪→ F ,

such that F admits an internal category 000 ∈ Cat(F) that ‘represents’ E , in the sense that

HomCat(F)(I,000) ≃ (F/I)<E ,

pseudonaturally in I ∈ F , where (F/I)<E is the full subcategory of F/I on the maps with ‘E-small
fibers.’ More intuitively, we then have, in particular, that

HomCat(F)(I,000) ≃ E/I ,

pseudonaturally in I ∈ E .
We will also ask for a novel density condition on the logical inclusion

E i
↪−→ F ,

which is used to extend the induced E-indexed logical inclusion

E/(−) ↪→ i∗F/(−)

to the expected F-indexed logical inclusion

(F/(−))<E ↪→ F/(−) .

We introduce stratified toposes, which are toposes that admit a hierarchy of universes in our
sense.1 Whereas, in an ordinary topos, monomorphisms are ‘represented’ by the subobject classifier,
in a stratified topos, all morphisms are, moreover, ‘represented’ by some universe.

1The term ‘stratified topos’ recalls the notion of stratified pseudotopos of [3], though the details of our proposal are
closer to [5].
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Key results about toposes can be refined to yield results about stratified toposes. As proof of
concept, we construct what we call the stratified topos of coalgebras for a stratified Cartesian
comonad on a stratified topos. This construction refines that of the topos of coalgebras for a Cartesian
comonad on a topos. It also solves in our setting a problem that was left open by [3] in the setting of
stratified pseudotoposes, and originally solved in [5]’s setting in the dissertation of the author [6].
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[3] I. Moerdijk and E. Palmgren, Type Theories, Toposes and Constructive Set Theory: Predicative
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[4] T. Streicher, Semantics of Type Theory, Birkhäuser, 1991.

[5] T. Streicher, Universes in Toposes, From Sets and Types to Topology and Analysis: Towards Prac-
ticable Foundations for Constructive Mathematics, Oxford Logic Guides, no. 48 (2005), pp. 78–90.

[6] C. Zwanziger, The Natural Display Topos of Coalgebras, Ph.D. thesis, Carnegie Mellon University,
2023.

3 CONTRIBUTED TALKS

17:00 - Thursday

202 Full Schedule


	Schedule
	Full Schedule
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday

	Invited talks
	Garner
	Heunen
	Joyal
	Mantovani
	Paré
	Rovelli

	Contributed talks
	Adámek
	Ahuja
	Arkor
	Awodey
	Baković
	Bardomiano Martínez
	Bartoš
	Benjamin
	Berger
	Bourke
	Caviglia
	Chabertier
	Cheng
	Cherradi
	Ching
	Cioffo
	Clarke
	Cockett
	Corner
	Cruttwell
	Culot
	Das
	Di Giorgio
	Di Meglio
	Doña Mateo
	Duliński
	Duvieusart
	Egner
	Femić
	Fernández Fariña
	Fiore
	Forsman
	Gran
	Guallart
	Hadzihasanovic
	Hautekiet
	Hermans
	Hofmann
	Hora
	Hughes
	Iwaniack
	Jurka
	Kawase
	Kim
	Ko
	Kock
	Koudenburg
	Krenz
	Krishna
	Lanfranchi
	Lee
	Lemay
	Leoncini
	Li
	Lindenhovius
	Lobbia
	Loregian
	Lucatelli Nunes
	Luckhardt
	Lucyshyn-Wright
	López Franco
	Maehara
	Maldonado Herrera
	Mancini
	Markakis
	Martínez-Carpena
	Martínez Ruiz
	Mertens
	Mesiti
	Miranda
	Moreau
	Myers
	Nasu
	North
	Osmond
	Perrone
	Pirashvili
	Pistalo
	Prezado
	Pronk
	Ramos González
	Ramos Pérez
	Ranchod
	Ray
	Reader
	Reimaa
	Roff
	Romö
	Rosenfield
	Rosolini
	Ruit
	Saadia
	Sava
	Sharma
	Siqueira
	Slattery
	Štěpán
	Taylor
	Tendas
	Tholen
	Townsend
	Trnka
	Trotta
	van den Berg
	Vienne
	Vokřínek
	Wullaert
	Xarez
	Yuksel
	Zorman
	Zwanziger


