Créditos ECTS Créditos ECTS: 4.5
Horas ECTS Criterios/Memorias Traballo do Alumno/a ECTS: 74.2 Horas de Titorías: 2.25 Clase Expositiva: 18 Clase Interactiva: 18 Total: 112.45
Linguas de uso Castelán, Galego
Tipo: Materia Ordinaria Grao RD 1393/2007 - 822/2021
Departamentos: Matemáticas
Áreas: Xeometría e Topoloxía
Centro Facultade de Matemáticas
Convocatoria: Primeiro semestre
Docencia: Con docencia
Matrícula: Matriculable
O obxectivo do curso é estudar conceptos, métodos e propiedades básicas dos espazos topolóxicos. Tamén coñecer algúns resultados matemáticos importantes no contexto topolóxico. Trátase por último de trasladar as destrezas nos estudos previos de topoloxía e análise matemática, facendo especial fincapé na súa aplicación no estudo dos espazos cociente.
1. Espazos topolóxicos (4 CLE + 2 CLIL)
Espazos topolóxicos. Espazos métricos. Interior, clausura e fronteira. Sistemas e bases de veciñanzas. Base de topoloxía.
2. Continuidade (3 CLE + 2 CLI)
Continuidade. Topoloxía inducida. Aplicacións abertas e pechadas. Homeomorfismos.
3. Novas construcións (8 CLE + 5 CLIL)
Subespazos: topoloxía relativa. Suma e producto de espazos topolóxicos: topoloxía suma e topoloxía producto. Espazos cociente: topoloxía de identificación. Colapsos. Subespazos e espazos cociente. Accións de grupos e espazos de órbitas.
4. Axiomas de separación e numerabilidade (5 CLE + 2 CLIL)
A propiedade de separación de Hausdorff. A propiedade de Hausdorff nos espazos cociente. Espazos normais. Espazos 1-numerables. Converxencia e caracterización dos pechados. Espazos 2-numerables. Teorema de Lindelöf.
5. Compacidade (8 CLE + 3 CLIL)
Espazos compactos. Teorema de Tychonoff. Espazos compactos Hausdorff. Compacidade en espazos métricos. Compacidade local.
Bibliografía básica:
Armstrong M. A., Topología básica. Editorial Reverté. Barcelona, 1987.
Dugundji J., Topology. Allyn and Bacon. Boston, 1966.
Willard S., General Topology. Addison-Wesley. Reading, 1970.
Bibliografía complementaria:
Adams C. and Franzosa R., Introduction to Topology: Pure and Applied. Pearson. 2007
Bourbaki N., Éléments de Mathématique. Topologie générale, chapitres 1 à 4. C.C.L.S, Paris, 1971.
Hu S.T., Elements of General Topology. Holden-Day. San Francisco, 1969.
Krantz S. G., Essentials of Topology with Applications. CRC Press, Boca Raton, 2010.
Masa X.M., Topoloxía Xeral. Manuais Universitarios 1, USC, 1999.
Munkres J. R., Topología. Prentice-Hall. Madrid, 2002.
Sutherland W.A., Introduction to metrics and topological spaces. Clarendon Press, Oxford, 1975.
Ademais de contribuir a acadar as competencias básicas, xerais e transversais recollidas na Memoria do Título de Grao en Matemáticas da Universidade de Santiago de Compostela (USC), e que poden consultarse en http://www.usc.es/export/sites/default/gl/servizos/sxopra/memorias_grao…, esta materia permitirá acadar as seguintes competencias específicas:
CE1 - Comprender e utilizar a linguaxe matemática;
CE2 - Coñecer demostracións rigorosas dalgúns teoremas clásicos en distintas áreas da Matemática;
CE3 - Idear demostracións de resultados matemáticos, formular conxecturas e imaxinar estratexias para confirmalas ou refutalas;
CE4 - Identificar erros en razoamentos incorrectos, propoñendo demostracións ou contraexemplos;
CE5 - Asimilar a definición dun novo obxecto matemático, relacionalo con outros xa coñecidos, e ser capaz de utilizalo en diferentes contextos;
CE6 - Saber abstraer as propiedades e feitos substanciais dun problema, distinguíndoas daquelas puramente ocasionais ou circunstanciais.
As “clases expositivas” adicaranse á exposición dos aspectos teóricos e prácticos da materia por parte do profesor, que serán ilustrados con abundantes exemplos. As “clases interactivas de laboratorio” estarán adicadas á resolución de problemas e exercicios propostos no curso virtual cada semana.
A cualificación de cada estudante será mediante avaliación continua e a realización dunha proba final nas datas fixadas no calendario oficial da Facultade.
A avaliación continua representará o 30% dá cualificación final. Realizarase ao longo do curso en base á participación de cada alumno en clase, resolución e/ou presentación de problemas propostos nos diferentes boletíns, e dous controis escritos, que terán un peso do 60% na AC.
- O exame final consistirá nunha proba escrita cunha parte teórica, que poderá incluír a definición de conceptos, o enunciado de resultados e a proba total ou parcial dos mesmos, e unha parte práctica consistente na resolución de problemas e exercicios similares aos resoltos nas clases de laboratorio. Representará un 70% da cualificación final.
Horas de traballo presencial:
Clases expositivas 28
Clases interactivas de laboratorio 14
Titorías en grupos moi reducidos ou individualizadas 2
Total horas traballo presencial 44
Horas de traballo do estudante
Estudo teórico e práctico relacionado coa docencia presencial 49
Preparación dos exercicios e da proba escrita 19
Total horas traballo persoal 68
Enrique Macías Virgós
Coordinador/a- Departamento
- Matemáticas
- Área
- Xeometría e Topoloxía
- Teléfono
- 881813153
- Correo electrónico
- quique.macias [at] usc.es
- Categoría
- Profesor/a: Catedrático/a de Universidade
Fernando Alcalde Cuesta
- Departamento
- Matemáticas
- Área
- Xeometría e Topoloxía
- Teléfono
- 881813142
- Correo electrónico
- fernando.alcalde [at] usc.es
- Categoría
- Profesor/a: Titular de Universidade
Álvaro Carballido Costas
- Departamento
- Matemáticas
- Área
- Xeometría e Topoloxía
- Correo electrónico
- alvaro.carballido.costas [at] usc.es
- Categoría
- Predoutoral Xunta
Juan Manuel Lorenzo Naveiro
- Departamento
- Matemáticas
- Área
- Xeometría e Topoloxía
- Correo electrónico
- jm.lorenzo [at] usc.es
- Categoría
- Predoutoral Ministerio
Luns | |||
---|---|---|---|
12:00-13:00 | Grupo /CLE_01 | Castelán | Aula 06 |
Martes | |||
10:00-11:00 | Grupo /CLE_01 | Castelán | Aula 03 |
11:00-12:00 | Grupo /CLE_02 | Castelán | Aula 06 |
Mércores | |||
10:00-11:00 | Grupo /CLE_02 | Castelán | Aula 06 |
Xoves | |||
09:00-10:00 | Grupo /CLIL_04 | Castelán | Aula 07 |
10:00-11:00 | Grupo /CLIL_03 | Castelán | Aula 07 |
11:00-12:00 | Grupo /CLIL_01 | Castelán | Aula 07 |
13.01.2023 16:00-20:00 | Grupo /CLE_01 | Aula 06 |
15.06.2023 16:00-20:00 | Grupo /CLE_01 | Aula 06 |