Créditos ECTS Créditos ECTS: 6
Horas ECTS Criterios/Memorias Traballo do Alumno/a ECTS: 99 Horas de Titorías: 3 Clase Expositiva: 24 Clase Interactiva: 24 Total: 150
Linguas de uso Castelán, Galego, Inglés
Tipo: Materia Ordinaria Grao RD 1393/2007 - 822/2021
Centro Facultade de Matemáticas
Convocatoria: Segundo semestre
Docencia: Sen docencia (En extinción)
Matrícula: Non matriculable (Só plans en extinción)
O estudo da topoloxía da recta real iniciouse na materia de "Introdución á Análise Matemática" e, no relativo á continuidade, desenvólvese na materia "Continuidade e derivabilidade de funcións dunha variábel real". Agora, nesta materia vaise abordar o estudo da topoloxía non soamente da recta real, mais tamén dos espazos euclidianos de calquera dimensión. Ademais, farase un tratamento máis sistemático das cuestións consideradas.
Os principais obxectivos son:
• Estudar conceptos, métodos e propiedades métricas e, fundamentalmente, topolóxicas en R^n, partindo da súa estrutura euclidiana.
• Aplicar as técnicas de converxencia de sucesións ao estudo de propiedades relacionadas coa topoloxía. Estudar a completitude.
• Estudar a continuidade das funcións no ámbito dos espazos euclidianos. Identificar funcións continuas ou discontinuidades de funcións. Describir funcións xeometricamente. Dispor de exemplos de funcións que ilustren propiedades diversas. Expresar analiticamente transformacións xeométricas sinxelas.
• Comprender os conceptos de conexión e compacidade. Na súa expresión máis sinxela, o resultado típico dirá que toda función real continua con dominio un intervalo pechado alcanza o máximo, o mínimo e calquera valor intermedio; aprenderase que as únicas propiedades necesarias do intervalo son a conexión e a compacidade. É unha mostra dun dos aspectos máis característicos da matemática: como a solución de problemas, ás veces de formulación simple, require a miúdo de teorías moi abstractas.
Tema 1 Os espazos euclidianos (4 horas expositivas)
1.1 Produto escalar e norma euclidiana
1.2 Desigualdades de Cauchy-Schwarz e de Minkowski
1.3 Distancia euclidiana. Propiedades; a desigualdade triangular
1.4 Bólas abertas
1.5 Distancia entre conxuntos. Conxuntos limitados. Diámetro
Tema 2 A topoloxía do espazo euclidiano (4 horas expositivas)
2.1 Definición de conxunto aberto
2.2 Propiedades características dos conxuntos abertos
2.3 Conxuntos pechados
2.4 Espazos e subespazos. Abertos relativos
Tema 3 Converxencia e completitude (4 horas expositivas)
3.1 Sucesións. Sucesións converxentes. Subsucesións
3.2 Converxencia e topoloxía
3.3 Sucesións de Cauchy
3.4 Completitude do espazo euclidiano
Tema 4 Continuidade (8 horas expositivas)
4.1 Definición de continuidade
4.2 Caracterizacións globais da continuidade
4.3 Continuidade secuencial
4.4 Función combinada
4.5 Homeomorfismos
4.6 Propiedades topolóxicas
Tema 5 Conexión (4 horas expositivas)
5.1 Conxuntos conexos
5.2 Conexión e continuidade
5.3 Conxuntos conexos por camiños
Tema 6 Compacidade (4 horas expositivas)
6.1 Conxuntos compactos
6.2 Compacidade e continuidade
6.3 Caracterización dos conxuntos compactos no espazo euclidiano (teorema de Heine-Borel)
Bibliografía básica:
Curso no campus virtual, tamén accesible en http://xtsunxet.usc.es/carlos/topoloxia1/
MASA VÁZQUEZ, X.M. Curso de topoloxía: dos números reais ao Grupo de Poincaré. USC Editora. Manuais, Universidade de Santiago de Compostela, 2020. (Edición revisada e actualizada do manual de 1999)
MASA VÁZQUEZ, X.M. Topoloxía xeral. Introducción aos espazos euclidianos, métricos e topolóxicos. Manuais universitarios, Universidade de Santiago de Compostela, 1999.
Bibliografía complementaria:
BARTLE, R.G. Introducción al Análisis Matemático. Ed. Limusa. México, 1980.
BUSKES, G. and VAN ROOIJ, A. Topological spaces. Springer, 1996.
https://link.springer.com/book/10.1007/978-1-4612-0665-1
CHINN, W.G. and STEENROOD, N.E. Primeros conceptos de Topología. Ed. Alhambra, 1975.
SUTHERLAND, W.A. Introduction to metrics and topological spaces. Clarendon Press. Oxford, 1975.
Neste curso preténdese contribuír a mellorar as competencias básicas, xerais e transversais do Grao de Matemáticas. Ademais, traballaranse as seguintes competencias ESPECÍFICAS do grao:
CE1 - Comprender e utilizar a linguaxe matemática.
CE2 - Coñecer demostracións rigorosas dalgúns teoremas clásicos en distintas áreas da Matemática.
CE3 - Idear demostracións de resultados matemáticos, formular conxecturas e imaxinar estratexias para confirmalas ou negalas.
CE4 - Identificar erros en razoamentos incorrectos propoñendo demostracións ou contraexemplos.
CE5.- Asimilar a definición dun novo obxecto matemático, relacionalo con outros xa coñecidos, e ser quen de utilizalo en diferentes contextos.
CE6.- Saber abstraer as propiedades e feitos substanciais dun problema, distinguíndoas daquelas puramente ocasionais ou circunstanciais.
A avaliación realizarase mediante un exame na data fixada pola Facultade de Matemáticas.
Victor Sanmartin Lopez
- Departamento
- Matemáticas
- Área
- Xeometría e Topoloxía
- Correo electrónico
- victor.sanmartin [at] usc.es
- Categoría
- PROFESOR/A PERMANENTE LABORAL
21.05.2026 10:00-14:00 | Grupo de exame | Aula 06 |
08.07.2026 10:00-14:00 | Grupo de exame | Aula 06 |