ECTS credits ECTS credits: 6
ECTS Hours Rules/Memories Student's work ECTS: 99 Hours of tutorials: 3 Expository Class: 24 Interactive Classroom: 24 Total: 150
Use languages Spanish, Galician
Type: Ordinary Degree Subject RD 1393/2007 - 822/2021
Departments: Particle Physics
Areas: Atomic, Molecular and Nuclear Physics
Center Faculty of Physics
Call: First Semester
Teaching: With teaching
Enrolment: Enrollable
Scenario 1:
- To introduce the students in subatomic physics subjects
- To introduce the fundamental components of matter and their interactions
- To familiarize the student with the study of the atomic nucleus and its constituents: the nucleons.
- To present the nucleus as a many-body complex systems. To understand and classify the properties of nuclei.
- To learn about transfer of basic knowledge to different technological matters that provide important social benefits
"Learning outcomes": The student should probe:
· To have acquired knowledge of subatomic physics
· To know the fundamental components of matter and their interactions
· To know how to classify and explain the properties of nuclei
· To be able to apply the acquired knowledge to different technological advances that provide important social benefits.
· To possess a deep understanding of physical underlying phenomena.
· To have acquired advanced skills in problem solving.
Scenario 2 and 3, unchanged
Scenario 1
GENERAL PROPERTIES OF NUCLEI.
1. Introduction. Basic terminology. Nuclear forces: general properties, the deuteron in S wave. Nuclear stability. Quantum numbers. Nuclide charts.
2.- Nuclear masses. Atomic masses. Mass defects. Mass spectrometry. Binding and Separation energies. Magic numbers. Semi-empirical mass formula. Isotopic abundances. Fission. Fusion.
3.- Nuclear sizes. Electron scattering experiments. Fermi Golden Rule. Form factors. Other methods to determine nuclear sizes. Hadron sizes.
4. Spins and electromagnetic nuclear moments. Spins: Regularities. Static nuclear moments. Charge, electric quadrupole moment, magnetic dipole moment.
NUCLEAR INSTABILITY.
1.- Nuclear instability. Radioactive phenomena: Types of radioactive decays and conservation laws. Continuous theory: Single nuclide, branching; Several substances. Natural radioactive series. Equilibrium conditions
2.- Alpha decay: general properties. Lifetimes. Coulomb and angular momentum barriers. Potential barriers in other processes.
3.- Beta decay: Beta process. Evidence of neutrinos. Fermi theory of beta decay. Allowed and forbidden decays.
4.- Electromagnetic transitions: Gamma emission. Internal conversion Internal pair production. Natural linewidth. Mössbauer effect.
NUCLEAR REACTIONS.
1.- Types of reactions and conservation laws. Observables. Reaction Cross Sections. Reaction mechanisms: Compound-Nucleus reactions; Direct reactions. The partial wave formalism, Breit-Wigner resonance shape.
ELEMENTARY PARTICLES.
1.- Classification and properties of elementary particles.
2.- Leptons and the weak interaction. Neutrino physics
3.- Baryonic and mesonic resonances.
4.- Quarks. Hadrons in the naïve quark model.
SYMMETRIES AND CONSERVATION LAWS.
1.- Symmetries and conserved magnitudes.
2.- Continuous symmetries. Discrete symmetries. C, P and CP violation.
THE STANDARD MODEL OF PARTICLE PHYSICS.
1.- The fundamental interactions as exchange forces. Qualitative introduction to QED and Feynman diagrams
2.- Strong interaction between quarks, QCD.
3.- Weak Interaction between quarks and leptons. Charged and neutral currents.
4.- Open questions in nuclear and particle physics. (in seminars and interactive sessions).
COMPOSITE SYSTEMS. NUCLEAR AND PARTICLE STRUCTURE
1.- Composite particles. Hadron structure in terms of quarks: quarkonia, mesons and baryons. Exotic hadrons.
2.- Nuclear systems: Models. Nuclear shell model; extreme form of the shell model: Single- particle shell model. Collective model: Vibrations and Rotations (phenomenological summary).
APPLICATIONS OF NUCLEAR AND PARTICLE PHYSICS
(Seminars and interactive sessions)•
- Applications of radioactive phenomena: Radioisotope generators; radioactive dating.
- Energy applications of nuclear physics: fission and fusion. Dosimetry and radiation protection
-Medical applications in diagnosis and therapy.
-Other applications (non-destructive techniques).
In the case of activation of scenarios 2 or 3, the aforementioned contents will be maintained and the teaching methodology will be adapted.
BASIC BIBLIOGRAPHY
Introductory nuclear physics, Keneth S. Krane, Ed: John Wiley & Sons.
Introduction to Elementary Particles, D. Griffiths. John Wiley & Sons.
Particle Physics, B. R. Martin & G. Shaw.-, 3ª Ed. John Wiley & Sons.
Física nuclear y de partículas, Ferrer Soria, Antonio, Ed: Universitat de Valencia.
COMPLEMENTARY BIBLIOGRAPHY
Nuclear and Particle Physics, W. E. Burcham & M. Jobes. Cambridge University Press.
Nuclear Physics in a Nutshell, Bertulani, Carlos, Ed: Princeton University Press.
Radioactivity, Radionuclides, Radiation, J. Magill & J. Galy, Springer – Verlag, Berlin.
Modern Particle Physics, M. Thomson, Cambridge University Press.
Fundamentals in Nuclear Physics, Basdevant, Jean-Louis, Rich, James and Spiro Michel. Ed: Springer.
Introductory nuclear physics , P.E. Hodgson and E. Gadioli and E. Gadioli Erba, Ed: Clarendon.
Subatomic physics, Frauenfelder, Hans and Henley E. M. , Ed: Prentice. E.M. Henley, A. García. 3ª Edición. John Wiley& Sons
Introduction to elementary particle physics, Bettini, Alessandro, Cambridge University Press.
Nuclear and Particle Physics, an Introduction, B. R. Martin, John Wiley & Sons.
Radiation detection and measurement, Knoll, Glenn F., Ed: John Wiley & Sons.
Online resources
The course makes use of various materials, with open to the public acces and maintained by national or international institutions. Therefore, they will be useful in any possible Scenario ( 1 , 2 and 3) . Students will routinely use them as databases, to have access to level diagrams, physical constants, and any other teaching material. The available material is abundant and even though we transfer lot of information through the virtual campus, students will make greater use of the following documentation centers:
http://www.nndc.bnl.gov
http://physics.nist.gov/cuu/index.html
http://www.iaea.org
http://pdg.lbl.gov
At the time of approving this teaching program, and considering the possibility of having to teach in scenario 2 or even 3, the new bibliographic material is being requested and acquired. Because of this, when the funds are available, the teaching staff will indicate to the students, through the virtual campus, the material that will be available, in electronic format , in the USC library.
ESSENTIAL PREREQUISITES:
- Good mathematical training (equivalent to pass the Mathematical Methods I and III subjects).
- Deep understanding of General Physics principles (equivalent to pass the General Physics I and II subjects).
- Comprehension of Quantum Phenomena and Quantum machanics formalism (equivalent to pass Quantum Physics I and Quantum Physics II subjects)
Once students have passed the left exam they should have acquired the following COMPETENCES:
BASIC:
CB1-That students have proven to possess and understand knowledge in a study area that is part of the basis of general secondary education, and is often found at a level that, while supported by advanced textbooks, also includes some aspects that involve knowledge from the forefront of their field of study.
CB2-That students know how to apply their knowledge to their work or vocation in a professional way and possess the competencies that are often demonstrated through the elaboration and defense of arguments and the resolution of problems within their area of study.
CB3-That students have the ability to collect and interpret relevant data (usually within their area of study) to make judgments that include reflection on relevant social, scientific or ethical issues.
GENERAL:
CG1-Possess and understand the most important concepts, methods and results of the different branches of physics, with historical perspective of their development.
CG2-Have the capacity to gather and interpret relevant data, information and results, to obtain conclusions and to issue reasoned reports in scientific, technological or other areas that require the use of knowledge of physics.
CG3-Apply both the theoretical and practical knowledge acquired as the capacity of analysis and abstraction in the definition and approach of problems and in the search of their solutions in both academic and professional contexts.
TRANSVERSAL:
CT1-Acquire analysis and synthesis capacity.
CT2-Have organizational capacity and planning.
CT5-Develop critical reasoning.
SPECIFIC:
CE1-Have a good understanding of the most important physical theories, locating in their logical and mathematical structure, their experimental support and the physical phenomenon that can be described through them.
CE2-Be able to clearly handle the orders of magnitude and make appropriate estimates in order to develop a clear perception of situations that, although physically different, show some analogy, allowing the use of known solutions to new problems.
CE5-Be able to realize the essentials of a process or situation and establish a model of work of the same as well as to carry out the required approximations in order to reduce the problem to a manageable level. Possess critical thinking to build physical models.
CE6-Understand and master the use of the mathematical and numerical methods most commonly used in physics.
CE8-Be able to manage, search and use bibliography, as well as any source of relevant information and apply it to research and technical development projects.
In the case of having to teach in scenario 2 or 3, the acquisition of the aforementioned skills will be maintained, although the teaching methodology will be adapted.
A methodology based on theoretical lectures will be used. They will be complemented with exercises solving sessions. Teaching will be face-to-face if scenario 1 can be maintained. In the case of scenarios 2 or 3, telematic solutions will be implemeted. Details will be communicated to students through the virtual classroom.
From the realization of seminars, students will be introduced to current research topics in the field of nuclear and particle physics.
The lecturers will closely monitor the evolution of the students through their assistance to tutorials or interactive sessions that are taught in smaller groups
The tutorials may be face-to-face or telematic, by appointment, depending on the demand of the students, their possible organization in subgroups will depend on the scenario, 1, 2 or 3.
The virtual classroom will be used at least as a channel of communication and publication of results.
Scenario 1:
The subject DOES NOT include the completion of a final exam for the first evaluation.
The evaluation system will combine daily monitoring (participation in the classes) with a continuous evaluation that may consist of brief test exercises (quiz), problem solving and data analysis.
One or more additional, longer-term tests that assess overall competences and that will account for up to 75% of the final grade will complete the student's assessment.
For the second evaluation opportunity (July) there will be a conventional final exam.
In cases of fraudulent performance of exercises or tests, the provisions of the “Regulations for the assessment of two academic performance and the review of qualifications” will apply.
If scenario 2 is activated, the continuous assessment tests of scenario 1 will be maintained, adapting to available telematic tools.
Finally, in the case of scenario 3, the entire evaluation will be telematic.
For each hour of lecture, it is estimated that the student should need approximately one and a half hours of personal work
All possible scenarios require similar dedication.
Asistencia a clase, estudio de los temas, resolución y discusión de los ejercicios propuestos. También es importante prestar atención a las instrucciones y materiales que se pongan a disposición de los alumnos en el Aula Virtual d ela asignatura
PLAN DE CONTINGENCIA ante un posible cambio de escenario
1) Objetivos: sin cambios
2) Contenidos: sen cambios
3) Material bibliográfico: sen cambios
4) Competencias: sen cambios
5) Metodoloxía:
Si se decreta la situación de escenario 2
Parte de la docencia se desarrollará telemáticamente. Si las medidas adoptadas por las autoridades sanitarias lo permiten, las clases expositivas se desarrollará telemáticamente empleando plataformas, como Teams y el apoyo del Aula virtual de la asignatura, respectando el horario oficial de clases aprobado por el centro.
Si la limitación de aforo dictado por las autoridades sanitarias no permite que todo el alumnado asista a las clases interactivas presenciales, estas se retransmitirán en streaming. Los alumnos asistirán por turnos a las clases presenciales. El número de alumnos por turno estará condicionada a las normas en vigor en cada momento.
Se priorizará, a la hora de programar la actividad de la materia, la presencialidad en las pruebas de evaluación frente a las clases interactivas presenciales. Si debido a la inevitable rotación del alumnado, las pruebas de evaluación consumieran un número inasumible de horas, la docencia correspondiente se impartiría telemáticamente.
Las tutorías podrán ser presenciales o telemáticas y requerirán de cita previa.
Si se decreta la situación de escenario 3
La docencia será telemática y las clases se desarrollarán de forma síncrona en el horario oficial de clase. Puede ser que, por causas sobrevenidas, alguna das clases se desarrolle de a de forma asíncrona, lo que se comunicará al alumnado con anterioridad.
Las tutorías serán telemáticas y requerirán de cita previa
6) Sistema de evaluación
En los escenarios 2 y 3
Las actividades de evaluación que no puedan ser realizadas de forma presencial, si no pueden ser retrasadas, se realizarán telemáticamente a través das herramientas institucionales en Office 365 e Moodle. En este caso se exigirá la adopción de una serie de medidas que requerirán que el alumnado disponga de un dispositivo con micrófono y cámara mientras non se disponga de un software de evaluación adecuado. El alumnado podrá ser citado a una entrevista para comentar o explicar una parte, o el total, de la prueba.
Para os casos de realización fraudulenta de ejercicios o pruebas será de aplicación lo recogido en la “Normativa de avaliación do rendemento académico dos estudantes e de revisión de cualificacións”.
7) Tempo de estudio y trabajo personal: sin cambios
Maximo Plo Casasus
Coordinador/a- Department
- Particle Physics
- Area
- Atomic, Molecular and Nuclear Physics
- Phone
- 881813987
- maximo.plo [at] usc.es
- Category
- Professor: University Professor
Maria Dolores Cortina Gil
- Department
- Particle Physics
- Area
- Atomic, Molecular and Nuclear Physics
- Phone
- 881813629
- Category
- Professor: University Professor
Antía Graña González
- Department
- Particle Physics
- Area
- Atomic, Molecular and Nuclear Physics
- antia.grana.gonzalez [at] usc.es
- Category
- Ministry Pre-doctoral Contract
Daniel Fernández Fernández
- Department
- Particle Physics
- Area
- Atomic, Molecular and Nuclear Physics
- dani.fernandez [at] usc.es
- Category
- Ministry Pre-doctoral Contract
Adrian Bembibre Fernandez
- Department
- Particle Physics
- Area
- Atomic, Molecular and Nuclear Physics
- adrian.bembibre.fernandez [at] usc.es
- Category
- Ministry Pre-doctoral Contract
Monday | |||
---|---|---|---|
17:00-18:00 | Grupo /CLIS_02 | Spanish | Classroom 130 |
Tuesday | |||
18:00-19:00 | Grupo /CLIS_01 | Spanish | Classroom 130 |
Wednesday | |||
17:00-18:00 | Grupo /CLIS_02 | Spanish | Classroom 130 |
Thursday | |||
18:00-19:00 | Grupo /CLIS_01 | Spanish | Classroom 130 |
01.20.2021 09:00-14:00 | Grupo /CLE_01 | 3 (Computer Science) |
01.20.2021 09:00-14:00 | Grupo /CLE_01 | Classroom 0 |
01.20.2021 09:00-14:00 | Grupo /CLE_01 | Classroom 130 |
01.20.2021 09:00-14:00 | Grupo /CLE_01 | Classroom 6 |
01.20.2021 09:00-14:00 | Grupo /CLE_01 | Classroom 830 |
01.20.2021 09:00-14:00 | Grupo /CLE_01 | Corridor |
01.20.2021 09:00-14:00 | Grupo /CLE_01 | Main Hall |
07.02.2021 16:00-20:00 | Grupo /CLE_01 | Classroom 130 |
07.02.2021 16:00-20:00 | Grupo /CLE_01 | Classroom 140 |
07.02.2021 16:00-20:00 | Grupo /CLE_01 | Classroom 6 |
07.02.2021 16:00-20:00 | Grupo /CLE_01 | Classroom 830 |
07.02.2021 16:00-20:00 | Grupo /CLE_01 | Classroom 840 |