Créditos ECTS Créditos ECTS: 6
Horas ECTS Criterios/Memorias Trabajo del Alumno/a ECTS: 99 Horas de Tutorías: 3 Clase Expositiva: 24 Clase Interactiva: 24 Total: 150
Lenguas de uso Castellano, Gallego, Inglés
Tipo: Materia Ordinaria Grado RD 1393/2007 - 822/2021
Centro Facultad de Matemáticas
Convocatoria: Segundo semestre
Docencia: Sin docencia (En extinción)
Matrícula: No matriculable (Sólo planes en extinción)
El estudio de la topología de la recta real se inició en la materia de "Introdución al Análisis Matemático" y, en referencia a la continuidad, se desarrolla en la materia "Continuidad y derivabilidad de funciones de una variable real". Ahora, en esta asignatura, se aborda el estudio de la topología no solamente de la recta real, sino también de los espacios euclidianos de cualquier dimensión. Además, se hará un tratamiento más sistemático de las cuestiones consideradas.
Los principales objetivos son:
• Estudiar conceptos, métodos y propiedades métricas y, fundamentalmente, topológicas en R^n, partiendo de su estructura euclidiana.
• Aplicar las técnicas de convergencia de sucesiones al estudio de propiedades relacionadas con la topología. Estudiar la completitud.
• Estudiar la continuidad de funciones en el ámbito de los espacios euclidianos. Identificar funciones continuas, o discontinuidades de funciones. Describir funciones geométricamente. Dar ejemplos de funciones que ilustren propiedades diversas. Expresar analíticamente transformaciones geométricas sencillas.
• Comprender los conceptos de conexidad y compacidad. En su expresión más sencilla, un resultado típico dirá que toda función real continua con dominio un intervalo cerrado alcanza el máximo, el mínimo y cualquier valor intermedio; se observará que las únicas propiedades necesarias del intervalo son la conexidad y la compacidad. Es una muestra de uno de los aspectos más característicos de la matemática: como la solución de problemas, a veces de formulación simple, requiere a menudo de teorías muy abstractas.
Tema 1 Los espacios euclianos (4 horas expositivas)
1.1 Producto escalar y norma euclidiana
1.2 Desigualdades de Cauchy-Schwarz y de Minkowski
1.3 Distancia euclidiana. Propiedades; la desigualdad triangular
1.4 Bolas abiertas
1.5 Distancia entre conjuntos. Conjuntos acotados. Diámetro
Tema 2 La topología del espacio euclidiano (4 horas expositivas)
2.1 Definición de conjunto abierto
2.2 Propiedades características de los conjuntos abiertos
2.3 Conjuntos cerrados
2.4 Espacios y subespacios. Abiertos relativos
Tema 3 Convergencia y completitud (4 horas expositivas)
3.1 Sucesiones. Sucesiones convergentes. Subsucesiones
3.2 Convergencia y topología
3.3 Sucesiones de Cauchy
3.4 Completitud del espacio euclidiano
Tema 4 Continuidad (8 horas expositivas)
4.1 Definición de continuidad
4.2 Caracterizaciones globales de la continuidad
4.3 Continuidad secuencial
4.4 Función combinada
4.5 Homeomorfismos
4.6 Propiedades topológicas
Tema 5 Conexión (4 horas expositivas)
5.1 Conjuntos conexos
5.2 Conexión y continuidad
5.3 Conjuntos conexos por caminos
Tema 6 Compacidad (4 horas expositivas)
6.1 Compacidad
6.2 Compacidad y continuidad
6.3 Caracterización de los conjuntos compactos en el espacio euclidiano (Teorema de Heine-Borel)
Bibliografía básica:
Curso en el campus virtual, también accesible en http://xtsunxet.usc.es/carlos/topoloxia1/
MASA VÁZQUEZ, X.M. Curso de topoloxía: dos números reais ao Grupo de Poincaré. USC Editora. Manuais, Universidade de Santiago de Compostela, 2020. (Edición revisada y actualizada del manual de 1999)
MASA VÁZQUEZ, X.M. Topoloxía xeral. Introducción aos espazos euclidianos, métricos e topolóxicos. Manuais universitarios, Universidade de Santiago de Compostela, 1999.
Bibliografía complementaria:
BARTLE, R.G. Introducción al Análisis Matemático. Ed. Limusa. México, 1980.
BUSKES, G. AND VAN ROOIJ, A. Topological spaces. Springer, 1996.
https://link.springer.com/book/10.1007/978-1-4612-0665-1
CHINN, W.G. and STEENROOD, N.E. Primeros conceptos de Topología. Ed. Alhambra, 1975.
SUTHERLAND, W.A. Introduction to metrics and topological spaces. Clarendon Press. Oxford, 1975.
En este curso se pretende contribuir a mejorar las competencias básicas, generales y transversales del Grado de Matemáticas. Además se trabajarán las siguientes competencias ESPECÍFICAS del grado:
CE1 - Comprender y utilizar el lenguaje matemático.
CE2 - Conocer demostraciones rigurosas de algunos teoremas clásicos en distintas áreas de la Matemática.
CE3 - Idear demostraciones de resultados matemáticos, formular conjeturas e imaginar estrategias para confirmarlas o negarlas.
CE4 - Identificar errores en razonamientos incorrectos proponiendo demostraciones o contraejemplos.
CE5 - Asimilar la definición de un nuevo objeto matemático, relacionarlo con otros ya conocidos, y ser capaz de utilizarlo en diferentes contextos.
CE6 - Saber abstraer las propiedades y hechos sustanciales de un problema, distinguiéndolas de aquellas puramente ocasionales o circunstanciales.
La evaluación consistirá en un examen cuya fecha vendrá fijada por la Facultad de Matemáticas.
Victor Sanmartin Lopez
- Departamento
- Matemáticas
- Área
- Geometría y Topología
- Correo electrónico
- victor.sanmartin [at] usc.es
- Categoría
- PROFESOR/A PERMANENTE LABORAL
21.05.2026 10:00-14:00 | Grupo de examen | Aula 06 |
08.07.2026 10:00-14:00 | Grupo de examen | Aula 06 |