Créditos ECTS Créditos ECTS: 6
Horas ECTS Criterios/Memorias Traballo do Alumno/a ECTS: 99 Horas de Titorías: 3 Clase Expositiva: 24 Clase Interactiva: 24 Total: 150
Linguas de uso Castelán, Galego, Inglés
Tipo: Materia Ordinaria Grao RD 1393/2007 - 822/2021
Centro Escola Técnica Superior de Enxeñaría
Convocatoria: Primeiro semestre
Docencia: Sen docencia (En extinción)
Matrícula: Non matriculable (Só plans en extinción)
1. Coñecer e manexar os conceptos e técnicas descritas nos contidos da materia.
2. Coñecer a relación entre os problemas reais e o seu modelo matemático en termos de ecuacións diferenciais.
3. Clasificar e resolver as ecuacións diferenciais ordinarias máis usuais, especialmente o caso das ecuacións lineares, e a súa aplicación ao modelado matemático de procesos no ámbito da enxeñaría química.
4. Estudar os principais métodos analíticos de resolución de ecuacións diferenciais.
5. Comprender a necesidade de empregar métodos numéricos para a resolución dalgunhas ecuacións diferenciais e estudar os máis elementais.
6. Coñecer o uso de MATLAB para a resolución de ecuacións diferenciais e analizar os resultados.
Tema 1. Introdución ás ecuacións diferenciais ordinarias (EDOs)
Motivación. Terminoloxía básica: orde, tipo e linearidade. Solución xeral e solución particular. Solucións singulares. Existencia e unicidade de solución para un problema de valor inicial de primeira orde. Algúns problemas da enxeñaría que conducen a EDOs.
Tema 2. EDOs de primeira orde
Ecuacións en variables separadas. Ecuacións exactas. Factor integrante. Ecuacións lineares. Ecuacións homoxéneas. Aplicacións das EDOs de primeira orde.
Tema 3. Introdución á resolución numérica de EDOs
Motivación. Xeneralidades. Resolución numérica dun problema de valor inicial de primeira orde. Método de Euler. Métodos de Runge-Kutta de segunda orde. Aplicacións.
Tema 4. EDOs lineares de orde superior
Ecuacións lineares de segunda orde. Ecuacións lineares homoxéneas con coeficientes constantes. Solución xeral. Ecuacións lineares non homoxéneas con coeficientes constantes. Método dos coeficientes indeterminados e método de variación de parámetros. Ecuacións lineares de orde superior. Aplicacións. Resolución numérica de ecuacións diferenciais de orde superior.
Tema 5. Resolución de sistemas lineares de EDOs. Transformada de Laplace
Definición de la transformada de Laplace. Cálculo e propiedades da transformada de Laplace. Transformada inversa de Laplace. Aplicación á resolución de sistemas lineares de ecuacións diferenciais. Aplicacións na enxeñaría química.
Tema 6. Introdución ás ecuacións en derivadas parciais (EDPs)
Definición de EDP. Orde e solución dunha EDP. EDPs de segunda orde lineares. Exemplos. Método de separación de variables. Introdución ao método de diferencias finitas.
BIBLIOGRAFÍA BÁSICA:
• NAGLE, R. Kent, SAFF, Edward B., 2005. Ecuaciones diferenciales y problemas con valores en la frontera. 8ª ed. México: Pearson Education. ISBN 978-968-444-483-6. Bibliotecas USC. Sinaturas: 1202 360 1, 1202 360 2, A ES 155 A 1
• NAGLE, R. Kent, SAFF, Edward B., SNIDER A., 2019. Fundamentals of Differential Equations. 9ª ed. Harlow: Pearson Education. ISBN 9781292240992. Biblioteca ETSE: Sinaturas: A012 13 C, A012 13 D, A012 13 E
Dispoñibles como préstamo electrónico (PreLo)
• NAGLE, R. Kent, SAFF, Edward B., SNIDER A. David., 2013. Fundamentals of Differential Equations. Harlow: Pearson. [Recurso electrónico]
• NAGLE, R. Kent, SAFF, Edward B., SNIDER A. David, 2005. Ecuaciones diferenciales y problemas con valores en la frontera. 4ª ed. México: Pearson. [Recurso electrónico]
BIBLIOGRAFÍA COMPLEMENTARIA:
• BOYCE, William E., DIPRIMA, Richard C., 2010. Elementary Differential Equations and Boundary Value Problems. 9th ed. New York: Wiley. ISBN 978-0-470-39873-9
• CUTLIP, Michael B., SHACHAM, Mordechai, 2000. Problem solving in chemical engineering with numerical methods. New Jersey: Prentice Hall International Series in the Physical and Chemical Engineering Sciences. ISBN 0-13-862566-2
• SIMMONS, George F., 2002. Ecuaciones diferenciales con aplicaciones y notas históricas. 2ª ed. Madrid: McGraw-Hill. ISBN 84-481-0045-X
• ZILL, Dennis G., CULLEN, Michael R., 2008. Matemáticas avanzadas para ingeniería I: ecuaciones diferenciales. 3ª ed. México: McGraw-Hill. ISBN 9789701065143
Contribuír a alcanzar as competencias xerais e transversais recollidas na Memoria do Título de Grao en Enxeñaría Química da USC. Concretamente:
Competencias básicas e xerais
CB.1. Que os estudiantes teñan amosado posuir e comprender coñecementos nunha área de estudo que parte da base da educación secundaria xeral, e se adoita encontrar a un nivel que, se ben se apoia en libros de texto avanzados, inclúe tamén algúns aspectos que implican coñecementos procedentes da vangarda do seu campo de estudo.
CG.3. Coñecemento en materias básicas e tecnolóxicas, que os capacite para a aprendizaxe de novos métodos e teorías, e os dote de versatilidade para adaptarse a novas situacións.
CG.4. Capacidade de resolver problemas con iniciativa, toma de decisións, creatividade, razoamento crítico e de comunicar e transmitir coñecementos, habilidades e destrezas no campo da enxeñaría química.
Competencias transversais
CT.1. Capacidade de análise e síntese.
CT.6. Resolución de problemas.
CT.7. Toma de decisións.
CT.13. Capacidade de aplicar os coñecementos na práctica.
CT.19. Aprendizaxe autónomo.
Alcanzar as competencias específicas descritas no módulo básico da memoria de grao. Concretamente, pretendese que os estudantes adquiran competencias en:
Competencias específicas
FB.1. Capacidade para a resolución dos problemas matemáticos que poidan proporse na enxeñaría. Aptitude para aplicar os coñecementos sobre:
FB.1.2. Ecuacións diferenciais ordinarias e en derivadas parciais.
FB.1.3. Métodos numéricos; algorítmica numérica.
Materia sen docencia presencial.
Poñerase a disposición do estudantado na Aula Virtual da materia o programa detallado, a bibliografía básica e complementaria e o material docente do último curso con dereito a docencia (2024/2025). A única metodoloxía docente que ten cabida nun contexto dunha materia en extinción (sen dereito a docencia) son as titorías individuais, orientadas á resolución de dúbidas e dificultades concretas de carácter teórico, conceptual e/ou práctico. Ditas titorías requirirán cita previa e será o profesorado responsable o que determine o formato da súa realización
A avaliación baséase nos seguintes elementos:
1. Actividades de avaliación continua de Matlab (EM): Porcentaxe na cualificación final: 15%. Carácter: obrigatorio
O estudante pode elexir entre:
a) Conservar a calificación obtida durante o último curso con dereito a docencia (2024-25).
b) Facer un exame na aula de informática relacionado con estes contidos. Neste caso, a proba tería lugar o mesmo día do exame escrito da materia e a continuación deste.
2. Exame escrito (EE): Un exame de toda a materia en cada oportunidade. Porcentaxe na cualificación final: 85%Carácter: obrigatorio
O exame constará dunha parte tipo test, cuestións curtas e un problema en relación cos contidos da materia.
En calquera das oportunidades de avaliación a calificación final (C) computarase como
C= EM +EE
Considerarase que non se presentará o alumno que non asista a ningún dos exames oficiais da materia.
Para os casos de realización fraudulenta de exercicios ou probas será de aplicación o recollido na Normativa de avaliación do rendemento académico dos estudiantes e de revisión de cualificacións.
Maria Dolores Gomez Pedreira
- Departamento
- Matemática Aplicada
- Área
- Matemática Aplicada
- Teléfono
- 881813186
- Correo electrónico
- mdolores.gomez [at] usc.es
- Categoría
- Profesor/a: Titular de Universidade
23.01.2026 09:15-14:00 | Grupo de exame | Aula A3 |
23.01.2026 09:15-14:00 | Grupo de exame | Aula A4 |
22.06.2026 09:30-14:00 | Grupo de exame | Aula A1 |