ECTS credits ECTS credits: 3
ECTS Hours Rules/Memories Student's work ECTS: 51 Hours of tutorials: 3 Expository Class: 9 Interactive Classroom: 12 Total: 75
Use languages Spanish, Galician
Type: Ordinary subject Master’s Degree RD 1393/2007 - 822/2021
Departments: Mathematics
Areas: Geometry and Topology
Center Faculty of Mathematics
Call: Second Semester
Teaching: With teaching
Enrolment: Enrollable | 1st year (Yes)
- To know the basic concepts and methods of the graph theory.
- To apply these methods to the study of the evolutionary dynamics.
1. GRAPHS.
2. BASIC PROPERTIES.
3. EVOLUTIONARY DYNAMICS ON GRAPHS.
Basic bibliography
J J. M. Aldous, R. J. Wilson, Graphs and applications : an introductory approach. Springer, London, 2006.
R. Diestel, Graph theory. Springer, New York, 1997.
D. Jungnickel, Graphs, networks and algorithms. Springer, Berlin,1999.
R. J. Wilson, Introduction to graph theory. Oliver & Boyd, Edinburgh, 1972.
Complementary bibliography
N. Christofides, Graph Theory: An Algorithmic Approach. Academic Press, London, 1975.
R. P. Grimaldi, Matemáticas discreta y combinatoria. Una introducción con aplicaciones. Addison Wesley Iberoamericana, México, 1997.
N. Hartsfield, G. Ringel, Pearls in Graph Theory. Academic Press, San Diego, 1994.
J. Lovász, J. Pelikán, K. Vesztergombi, Discrete mathematics. Springer, New York, 2003.
R. Lyons, Y. Peres, Probability on trees and networks. Draft version, 2008.
M. A. Nowak, Evolutionary Dynamics. Harvard University Press, Cambridge MA, 2006
In addition to achieve the general and transverse competences taken up in the memory of the degree,
- To know the basic concepts of the graph theory.
- To know effective methods for solving some problems on graphs.
- To be able to apply these methods to the study of evolutionary problems.
1 lecture and 1 problem-based learning session per week.
Evaluation essay (60%) and written test (40%)
22 hours of lectures
56 further hours' study
Plan de continxencia
Escenario 2. As “clases expositivas” combinarán aspectos teóricos e prácticos da materia e as “clases interactivas de laboratorio” se centrarán no estudo dos exemplos e na resolución dalgúns problemas. Avaliación continuada (60%) baseada na realización dun traballo persoal como a descripción dun algoritmo ou a lectura dun artigo de investigación e proba final presencial (40%).
Escenario 3. As “clases expositivas” combinarán aspectos teóricos e prácticos da materia e as “clases interactivas de laboratorio” se centrarán no estudo dos exemplos e na resolución dalgúns problemas. Os materiais do curso serán proporcionados a través do curso virtual. Avaliación continuada (60%) baseada na realización dun traballo persoal como a descripción dun algoritmo ou a lectura dun artigo de investigación e proba final oral (40%) a través de Teams.
Para os casos de realización fraudulenta de exercicios ou probas será de aplicación o recollido na Normativa de avaliación do rendemento académico dos estudantes e de revisión de cualificacións”.
Fernando Alcalde Cuesta
Coordinador/a- Department
- Mathematics
- Area
- Geometry and Topology
- Phone
- 881813142
- fernando.alcalde [at] usc.es
- Category
- Professor: University Lecturer
Monday | |||
---|---|---|---|
10:00-11:00 | Grupo /CLE_01 | Spanish | Classroom 10 |
Tuesday | |||
10:00-11:00 | Grupo /CLIL_01 | Spanish | Classroom 10 |